scholarly journals Development of a Multilocus Sequence Typing Tool for High-Resolution Genotyping of Enterocytozoon bieneusi

2011 ◽  
Vol 77 (14) ◽  
pp. 4822-4828 ◽  
Author(s):  
Yaoyu Feng ◽  
Na Li ◽  
Theresa Dearen ◽  
Maria L. Lobo ◽  
Olga Matos ◽  
...  

ABSTRACTThus far, genotyping ofEnterocytozoon bieneusihas been based solely on DNA sequence analysis of the internal transcribed spacer (ITS) of the rRNA gene. Both host-adapted and zoonotic (human-pathogenic) genotypes ofE. bieneusihave been identified. In this study, we searched for microsatellite and minisatellite sequences in the whole-genome sequence database ofE. bieneusiisolate H348. Seven potential targets (MS1 to MS7) were identified. Testing of the seven targets by PCR using two human-pathogenicE. bieneusigenotypes (A and Peru10) led to the selection of four targets (MS1, MS3, MS4, and MS7). Further analysis of the four loci with an additional 24 specimens of both host-adapted and zoonoticE. bieneusigenotypes indicated that most host-adapted genotypes were not amplified by PCR targeting these loci. In contrast, 10 or 11 of the 13 specimens of the zoonotic genotypes were amplified by PCR at each locus. Altogether, 12, 8, 7, and 11 genotypes of were identified at MS1, MS3, MS4, and MS7, respectively. Phylogenetic analysis of the nucleotide sequences obtained produced a genetic relationship that was similar to the one at the ITS locus, with the formation of a large group of zoonotic genotypes that included mostE. bieneusigenotypes in humans. Thus, a multilocus sequence typing tool was developed for high-resolution genotyping ofE. bieneusi.Data obtained in the study should also have implications for understanding the taxonomy ofEnterocytozoonspp., the public health significance ofE. bieneusiin animals, and the sources of humanE. bieneusiinfections.

Author(s):  
Pieter-Jan Kerkhof ◽  
Stephen L. W. On ◽  
Kurt Houf

A study on the polyphasic taxonomic classification of an Arcobacter strain, R-73987T, isolated from the rectal mucus of a porcine intestinal tract, was performed. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain could be assigned to the genus Arcobacter and suggested that strain R-73987T belongs to a novel undescribed species. Comparative analysis of the rpoB gene sequence confirmed the findings. Arcobacter faecis LMG 28519T was identified as its closest neighbour in a multigene analysis based on 107 protein- encoding genes. Further, whole-genome sequence comparisons by means of average nucleotide identity and in silico DNA–DNA hybridization between the genome of strain R-73987T and the genomes of validly named Arcobacter species resulted in values below 95–96 and 70  %, respectively. In addition, a phenotypic analysis further corroborated the conclusion that strain R-73987T represents a novel Arcobacter species, for which the name Arcobacter vandammei sp. nov. is proposed. The type strain is R-73987T (=LMG 31429T=CCUG 75005T). This appears to be the first Arcobacter species recovered from porcine intestinal mucus.


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Rene S. Hendriksen ◽  
Lance B. Price ◽  
James M. Schupp ◽  
John D. Gillece ◽  
Rolf S. Kaas ◽  
...  

ABSTRACT Cholera continues to be an important cause of human infections, and outbreaks are often observed after natural disasters, such as the one following the 2010 earthquake in Haiti. Once the cholera outbreak was confirmed, rumors spread that the disease was brought to Haiti by a battalion of Nepalese soldiers serving as United Nations peacekeepers. This possible connection has never been confirmed. We used whole-genome sequence typing (WGST), pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing to characterize 24 recent Vibrio cholerae isolates from Nepal and evaluate the suggested epidemiological link with the Haitian outbreak. The isolates were obtained from 30 July to 1 November 2010 from five different districts in Nepal. We compared the 24 genomes to 10 previously sequenced V. cholerae isolates, including 3 from the Haitian outbreak (began July 2010). Antimicrobial susceptibility and PFGE patterns were consistent with an epidemiological link between the isolates from Nepal and Haiti. WGST showed that all 24 V. cholerae isolates from Nepal belonged to a single monophyletic group that also contained isolates from Bangladesh and Haiti. The Nepalese isolates were divided into four closely related clusters. One cluster contained three Nepalese isolates and three Haitian isolates that were almost identical, with only 1- or 2-bp differences. Results in this study are consistent with Nepal as the origin of the Haitian outbreak. This highlights how rapidly infectious diseases might be transmitted globally through international travel and how public health officials need advanced molecular tools along with standard epidemiological analyses to quickly determine the sources of outbreaks. IMPORTANCE Cholera is one of the ancient classical diseases and particularly prone to cause major outbreaks following major natural disasters, such as earthquakes and hurricanes, where the normal separation between sewage and drinking water is destroyed. This was the case following the 2010 earthquake in Haiti. Rumors spread that the disease was brought to Haiti by a battalion of Nepalese soldiers serving as United Nations peacekeepers. This possible connection has never been confirmed. Sequencing the genomes of bacteria can give detailed information on whether isolates from different sites share a common origin. We used this technology to sequence isolates of Vibrio cholerae from Nepal, identify single-nucleotide polymorphisms (SNPs), and compare these high-resolution genotypes to the complete genome sequences of isolates from the Haiti outbreak. We provide support for the hypothesis that the isolates were brought to Haiti from Nepal.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 556-561 ◽  
Author(s):  
Wayne L. Nicholson ◽  
Kateryna Zhalnina ◽  
Rafael R. de Oliveira ◽  
Eric W. Triplett

A novel, psychrotolerant facultative anaerobe, strain WN1359T, was isolated from a permafrost borehole sample collected at the right bank of the Kolyma River in Siberia, Russia. Gram-positive-staining, non-motile, rod-shaped cells were observed with sizes of 1–2 µm long and 0.4–0.5 µm wide. Growth occurred in the range of pH 5.8–9.0 with optimal growth at pH 7.8–8.6 (pH optimum 8.2). The novel isolate grew at temperatures from 0–37 °C and optimal growth occurred at 25 °C. The novel isolate does not require NaCl; growth was observed between 0 and 8.8 % (1.5 M) NaCl with optimal growth at 0.5 % (w/v) NaCl. The isolate was a catalase-negative, facultatively anaerobic chemo-organoheterotroph that used sugars but not several single amino acids or dipeptides as substrates. The major metabolic end-product was lactic acid in the ratio of 86 % l-lactate : 14 % d-lactate. Strain WN1359T was sensitive to ampicillin, chloramphenicol, fusidic acid, lincomycin, monocycline, rifampicin, rifamycin SV, spectinomycin, streptomycin, troleandomycin and vancomycin, and resistant to nalidixic acid and aztreonam. The fatty acid content was predominantly unsaturated (70.2 %), branched-chain unsaturated (11.7 %) and saturated (12.5 %). The DNA G+C content was 35.3 mol% by whole genome sequence analysis. 16S rRNA gene sequence analysis showed 98.7 % sequence identity between strain WN1359T and Carnobacterium inhibens . Genome relatedness was computed using both Genome-to-Genome Distance Analysis (GGDA) and Average Nucleotide Identity (ANI), which both strongly supported strain WN1359T belonging to the species C. inhibens . On the basis of these results, the permafrost isolate WN1359T represents a novel subspecies of C. inhibens , for which the name Carnobacterium inhibens subsp. gilichinskyi subsp. nov. is proposed. The type strain is WN1359T ( = ATCC BAA-2557T = DSM 27470T). The subspecies Carnobacterium inhibens subsp. inhibens subsp. nov. is created automatically. An emended description of C. inhibens is also provided.


2014 ◽  
Vol 81 (3) ◽  
pp. 1047-1058 ◽  
Author(s):  
Szymon P. Szafranski ◽  
Melissa L. Wos-Oxley ◽  
Ramiro Vilchez-Vargas ◽  
Ruy Jáuregui ◽  
Iris Plumeier ◽  
...  

ABSTRACTThe oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens likePorphyromonas gingivalis,Treponema denticola, andTannerella forsythiacould be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3920-3926 ◽  
Author(s):  
Julia S. Bennett ◽  
Keith A. Jolley ◽  
Martin C. J. Maiden

Phylogenies generated from whole genome sequence (WGS) data provide definitive means of bacterial isolate characterization for typing and taxonomy. The species status of strains recently defined with conventional taxonomic approaches as representing Neisseria oralis was examined by the analysis of sequences derived from WGS data, specifically: (i) 53 Neisseria ribosomal protein subunit (rps) genes (ribosomal multi-locus sequence typing, rMLST); and (ii) 246 Neisseria core genes (core genome MLST, cgMLST). These data were compared with phylogenies derived from 16S and 23S rRNA gene sequences, demonstrating that the N. oralis strains were monophyletic with strains described previously as representing ‘ Neisseria mucosa var. heidelbergensis’ and that this group was of equivalent taxonomic status to other well-described species of the genus Neisseria . Phylogenetic analyses also indicated that Neisseria sicca and Neisseria macacae should be considered the same species as Neisseria mucosa and that Neisseria flavescens should be considered the same species as Neisseria subflava . Analyses using rMLST showed that some strains currently defined as belonging to the genus Neisseria were more closely related to species belonging to other genera within the family; however, whole genome analysis of a more comprehensive selection of strains from within the family Neisseriaceae would be necessary to confirm this. We suggest that strains previously identified as representing ‘ N. mucosa var. heidelbergensis’ and deposited in culture collections should be renamed N. oralis . Finally, one of the strains of N. oralis was able to ferment lactose, due to the presence of β-galactosidase and lactose permease genes, a characteristic previously thought to be unique to Neisseria lactamica , which therefore cannot be thought of as diagnostic for this species; however, the rMLST and cgMLST analyses confirm that N. oralis is most closely related to N. mucosa .


Author(s):  
Marvin A. Altamia ◽  
J. Reuben Shipway ◽  
David Stein ◽  
Meghan A. Betcher ◽  
Jennifer M. Fung ◽  
...  

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus Teredinibacter . The three strains may be differentiated and distinguished from other previously described Teredinibacter species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and Teredinibacter turnerae strains), the capacity for nitrogen fixation (Bs08T and T. turnerae strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Hui Zhang ◽  
Yuanyuan Wang ◽  
Lu Gao ◽  
Yan Wang ◽  
Rong Wei

Abstract Background Between 2018 and 2020, 989 clinical specimens from pigs showing clinical signs of a variety of swine diseases in 27 provinces in China were sampled and submitted for further testing. Nested PCR targeting the 16S rRNA gene of Mycoplasma hyopneumoniae and subsequent sequencing were used to analyse these specimens. Mycoplasma hyopneumoniae-positive samples were assayed by multilocus sequence typing (MLST). The aim of the study was to reveal the distribution of M. hyopneumoniae and determine the genotypes of M. hyopneumoniae in pig herds in China based on MLST. Results Among these 989 samples, 199 samples were M. hyopneumoniae-positive. The M. hyopneumoniae positivity rate was 7.2% (35/494) in 2018, 18.4% (38/207) in 2019, and 43.8% (126/288) in 2020. In total, 47 samples were successfully assayed by MLST. Sixteen new M. hyopneumoniae sequence types from 9 provinces were recorded in the present study. Conclusions This is the first report on sample positivity rates and molecular typing results for M. hyopneumoniae in swine herds in China. MLST has revealed high genotype diversity among M. hyopneumoniae from different provinces of China.


Author(s):  
Seoung Woo Ryu ◽  
Ji-Sun Kim ◽  
Byeong Seob Oh ◽  
Seung Yeob Yu ◽  
Jung-Sook Lee ◽  
...  

An obligately anaerobic, Gram-positive, non-motile, coccus-shaped bacterial strain designated AGMB00490T was isolated from swine faeces. 16S rRNA gene sequence-based phylogenetic analysis indicated that the isolate belongs to the genus Peptoniphilus and that the most closely related species is Peptoniphilus gorbachii WAL 10418T (=KCTC 5947T, 97.22 % 16S rRNA gene sequence similarity). Whole genome sequence analysis determined that the DNA G+C content of strain AGMB00490T was 31.2 mol% and moreover that the genome size and numbers of tRNA and rRNA genes were 2 129 517 bp, 34 and 10, respectively. Strain AGMB00490T was negative for oxidase and urease; positive for catalase, indole production, arginine arylamidase, leucine arylamidase, tyrosine arylamidase and histidine arylamidase; and weakly positive for phenylalanine arylamidase and glycine arylamidase. The major cellular fatty acids (>10 %) of the isolate were determined to be C16 : 0 and C18 : 1 ω9c. Strain AGMB00490T produced acetic acid as a major end product of metabolism. Accordingly, phylogenetic, physiologic and chemotaxonomic analyses revealed that strain AGMB00490T represents a novel species for which the name Peptoniphilus faecalis sp. nov. is proposed. The type strain is AGMB00490T (=KCTC 15944T=NBRC 114159T).


2013 ◽  
Vol 80 (1) ◽  
pp. 218-225 ◽  
Author(s):  
Yaqiong Guo ◽  
Kerri A. Alderisio ◽  
Wenli Yang ◽  
Vitaliano Cama ◽  
Yaoyu Feng ◽  
...  

ABSTRACTTo assess the host specificity ofEnterocytozoon bieneusiand to track the sources ofE. bieneusicontamination, we genotypedE. bieneusiin wildlife and stormwater from the watershed of New York City's source water, using ribosomal internal transcribed spacer (ITS)-based PCR and sequence analyses. A total of 255 specimens from 23 species of wild mammals and 67 samples from stormwater were analyzed. Seventy-four (29.0%) of the wildlife specimens and 39 (58.2%) of the stormwater samples from streams were PCR positive. Altogether, 20E. bieneusigenotypes were found, including 8 known genotypes and 12 new ones. Sixteen and five of the genotypes were seen in animals and stormwater from the watershed, respectively, with WL4 being the most common genotype in both animals (35 samples) and stormwater (23 samples). The 20E. bieneusigenotypes belonged to five genogroups (groups 1, 3, 4, and 7 and an outlier), with only 23/113 (20.4%)E. bieneusi-positive samples belonging to zoonotic genogroup 1 and 3/20 genotypes ever being detected in humans. The two genogroups previously considered host specific, groups 3 and 4, were both detected in multiple groups of mammals. Thus, with the exception of the type IV, Peru11, and D genotypes, which were detected in only 7, 5, and 2 animals, respectively, mostE. bieneusistrains in most wildlife samples and all stormwater samples in the watershed had no known public health significance, as these types have not previously been detected in humans. The role of different species of wild mammals in the contribution ofE. bieneusicontamination in stormwater was supported by determinations of host-adaptedCryptosporidiumspecies/genotypes in the same water samples. Data from this study indicate that the host specificity ofE. bieneusigroup 3 is broader than originally thought, and wildlife is the main source ofE. bieneusiin stormwater in the watershed.


2016 ◽  
Vol 54 (3) ◽  
pp. 739-744 ◽  
Author(s):  
P. L. Shewmaker ◽  
A. M. Whitney ◽  
B. W. Humrighouse

Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain ofStreptococcus halichoeriisolated from a seal are presented. Sequencing of the 16S rRNA,rpoB,sodA, andrecNgenes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain ofS.halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA,rpoB,sodA, andrecNgene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity toS. halichoeriCCUG 48324T, 97.9% similarity toS. canisATCC 43496T, and 97.8% similarity toS. ictaluriATCC BAA-1300T. A 3,530-bp fragment of therpoBgene was 98.8% similar to theS. halichoeritype strain, 84.6% to theS. canistype strain, and 83.8% to theS.ictaluritype strain. TheS. halichoeritype strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines forStreptococcusspecies viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates wereS. halichoeri. On the basis of these results, a novel subspecies,Streptococcushalichoerisubsp.hominis, is proposed for the human isolates andStreptococcus halichoerisubsp.halichoeriis proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844T= CCUG 67100T= LMG 28801T.


Sign in / Sign up

Export Citation Format

Share Document