scholarly journals Enhancement of Sphingolipid Synthesis Improves Osmotic Tolerance of Saccharomyces cerevisiae

2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Guoxing Zhu ◽  
Nannan Yin ◽  
Qiuling Luo ◽  
Jia Liu ◽  
Xiulai Chen ◽  
...  

ABSTRACT To enhance the growth performance of Saccharomyces cerevisiae under osmotic stress, mutant XCG001, which tolerates up to 1.5 M NaCl, was isolated through adaptive laboratory evolution (ALE). Comparisons of the transcriptome data of mutant XCG001 and the wild-type strain identified ELO2 as being associated with osmotic tolerance. In the ELO2 overexpression strain (XCG010), the contents of inositol phosphorylceramide (IPC; t18:0/26:0), mannosylinositol phosphorylceramide [MIPC; t18:0/22:0(2OH)], MIPC (d18:0/22:0), MIPC (d20:0/24:0), mannosyldiinositol phosphorylceramide [M(IP)2C; d20:0/26:0], M(IP)2C [t18:0/26:0(2OH)], and M(IP)2C [d20:0/26:0(2OH)] increased by 88.3 times, 167 times, 63.3 times, 23.9 times, 27.9 times, 114 times, and 208 times at 1.0 M NaCl, respectively, compared with the corresponding values of the control strain XCG002. As a result, the membrane integrity, cell growth, and cell survival rate of strain XCG010 increased by 24.4% ± 1.0%, 21.9% ± 1.5%, and 22.1% ± 1.1% at 1.0 M NaCl, respectively, compared with the corresponding values of the control strain XCG002 (wild-type strain with a control plasmid). These findings provided a novel strategy for engineering complex sphingolipids to enhance osmotic tolerance. IMPORTANCE This study demonstrated a novel strategy for the manipulation of membrane complex sphingolipids to enhance S. cerevisiae tolerance to osmotic stress. Elo2, a sphingolipid acyl chain elongase, was related to osmotic tolerance through transcriptome analysis of the wild-type strain and an osmosis-tolerant strain generated from ALE. Overexpression of ELO2 increased the content of complex sphingolipid with longer acyl chain; thus, membrane integrity and osmotic tolerance improved.

2019 ◽  
Author(s):  
Guoxing Zhu ◽  
Nannan Yin ◽  
Qiuling Luo ◽  
Jia Liu ◽  
Xiulai Chen ◽  
...  

ABSTRACTIn order to enhance the growth performance of S. cerevisiae under harsh environmental conditions, mutant XCG001, which tolerates up to 1.5M NaCl, was isolated via adaptive laboratory evolution (ALE). Comparisons made via transcriptome data of XCG001 and the wild-type strain identified ELO2 as being associated with osmotic tolerance. Overexpression of ELO2 increased the contents of inositol phosphorylceramide (IPC, t18:0/26:0), mannosylinositol phosphorylceramide (MIPC, t18:0/22:0(2OH)), MIPC (d18:0/22:0), MIPC (d20:0/24:0), mannosyldiinositol phosphorylceramide (M(IP)2C, d20:0/26:0), M(IP)2C (t18:0/26:0(2OH)) and M(IP)2C (d20:0/26:0(2OH)) by 88.3-, 166.9-, 63.3-, 23.9-, 27.9-, 113.8- and 208.1-fold at 1.0 M NaCl, respectively, compared those of strain XCG002. As a result, membrane integrity, cell growth and cell survival of the ELO2 overexpression strain (XCG010) increased by 24.4%, 29% and 22.1% at 1.0 M NaCl, respectively, compared those of strain XCG002. The findings provided a novel strategy for engineering complex sphingolipids to enhance osmotic tolerance.IMPORTANCEThis study demonstrated a novel strategy for manipulation membrane complex sphingolipids to enhance S. cerevisiae tolerance to osmotic stress. Osmotic tolerance was related to sphingolipid acyl chain elongase, Elo2, via transcriptome analysis of the wild-type strain and an osmotic tolerant strain generated from ALE. Overexpression of ELO2 increased complex sphingolipid with longer acyl chain, thus improved membrane integrity and osmotic tolerance.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Chengjin Wu ◽  
Jiali Zhang ◽  
Guoxing Zhu ◽  
Rui Yao ◽  
Xiulai Chen ◽  
...  

ABSTRACT Under stress conditions, Hog1 is required for cell survival through transiently phosphorylating downstream targets and reprogramming gene expression. Here, we report that Candida glabrata Hog1 (CgHog1) interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, in response to osmotic stress. Additionally, we found that deletion of CgRDS2 led to decreases in cell growth and cell survival by 23.4% and 39.6%, respectively, at 1.5 M NaCl, compared with levels of the wild-type strain. This is attributed to significant downregulation of the expression levels of glycerophospholipid metabolism genes. As a result, the content of total glycerophospholipid decreased by 30.3%. Membrane integrity also decreased 47.6% in the Cgrds2Δ strain at 1.5 M NaCl. In contrast, overexpression of CgRDS2 increased the cell growth and cell survival by 10.2% and 6.3%, respectively, owing to a significant increase in the total glycerophospholipid content and increased membrane integrity by 27.2% and 12.1%, respectively, at 1.5 M NaCl, compared with levels for the wild-type strain. However, a strain in which the CgRDS2 gene encodes the replacement of Ser64 and Thr97 residues with alanines (Cgrds22A), harboring a CgRds2 protein that was not phosphorylated by CgHog1, failed to promote glycerophospholipid metabolism and membrane integrity at 1.5 M NaCl. Thus, the above results demonstrate that CgHog1-mediated CgRds2 phosphorylation enhanced glycerophospholipid composition and membrane integrity to resist osmotic stress in C. glabrata. IMPORTANCE This study explored the role of CgHog1-mediated CgRds2 phosphorylation in response to osmotic stress in Candida glabrata. CgHog1 interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, under osmotic stress. Phosphorylated CgRds2 plays an important role in increasing glycerophospholipid composition and membrane integrity, thereby enhancing cell growth and survival.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Pei Zhou ◽  
Xiaoke Yuan ◽  
Hui Liu ◽  
Yanli Qi ◽  
Xiulai Chen ◽  
...  

ABSTRACT Candida glabrata is a high-performance microbial cell factory for the production of organic acids. To elucidate the role of the C. glabrata Mediator tail subunit Med2 (CgMed2) at pH 2.0, we deleted or overexpressed CgMed2 and used transcriptome analysis to identify genes that are regulated by CgMed2. At pH 2.0, the deletion of CgMed2 resulted in a cell growth decrease of 26.1% and a survival decrease of 32.3%. Overexpression of CgMed2 increased cell growth by 12.4% and cell survival by 5.9% compared to the wild-type strain. Transcriptome and phenotypic analyses identified CgYap6 as a transcription factor involved in acid pH stress tolerance. Deletion of CgYap6 caused growth defects, whereas its overexpression enhanced cell growth at pH 2.0. Furthermore, total glycerophospholipid content and membrane integrity decreased by 33.4% and 21.8%, respectively, in the CgMed2Δ strain; however, overexpression of CgMed2 increased the total glycerophospholipid content and membrane integrity by 24.7% and 12.1%, respectively, compared with those of the wild-type strain at pH 2.0. These results demonstrated that under acid pH stress, CgMed2 physically interacts with CgYap6, which translocates from the cytoplasm to the nucleus after being phosphorylated by the protein kinase CgYak1. Once in the nucleus, CgYap6 recruits CgMed2 to express glycerophospholipid-related genes. Our study elucidated the function of CgMed2 under acid pH stress and provides a potential strategy to equip Candida glabrata with low-pH resistance during organic acid fermentation. IMPORTANCE This study investigated the function of the Mediator tail subunit CgMed2 in C. glabrata under low-pH stress. The protein kinase CgYak1 activates CgYap6 for the recruitment of CgMed2, which in turn increases glycerophospholipid content and membrane integrity to confer low-pH stress tolerance. This study establishes a new link between the Mediator tail subunit and transcription factors. Overall, these findings indicate that CgMed2 is a novel target to induce the low-pH stress response in C. glabrata.


2014 ◽  
Vol 81 (5) ◽  
pp. 1708-1714 ◽  
Author(s):  
Min-Sik Kim ◽  
Ae Ran Choi ◽  
Seong Hyuk Lee ◽  
Hae-Chang Jung ◽  
Seung Seob Bae ◽  
...  

ABSTRACTGenome analysis revealed the existence of a putative transcriptional regulatory system governing CO metabolism inThermococcus onnurineusNA1, a carboxydotrophic hydrogenogenic archaeon. The regulatory system is composed of CorQ with a 4-vinyl reductase domain and CorR with a DNA-binding domain of the LysR-type transcriptional regulator family in close proximity to the CO dehydrogenase (CODH) gene cluster. Homologous genes of the CorQR pair were also found in the genomes ofThermococcusspecies and “CandidatusKorarchaeum cryptofilum” OPF8. In-frame deletion of eithercorQorcorRcaused a severe impairment in CO-dependent growth and H2production. WhencorQandcorRdeletion mutants were complemented by introducing thecorQRgenes under the control of a strong promoter, the mRNA and protein levels of the CODH gene were significantly increased in a ΔCorR strain complemented with integratedcorQR(ΔCorR/corQR↑) compared with those in the wild-type strain. In addition, the ΔCorR/corQR↑strain exhibited a much higher H2production rate (5.8-fold) than the wild-type strain in a bioreactor culture. The H2production rate (191.9 mmol liter−1h−1) and the specific H2production rate (249.6 mmol g−1h−1) of this strain were extremely high compared with those of CO-dependent H2-producing prokaryotes reported so far. These results suggest that thecorQRgenes encode a positive regulatory protein pair for the expression of a CODH gene cluster. The study also illustrates that manipulation of the transcriptional regulatory system can improve biological H2production.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2016 ◽  
Vol 82 (19) ◽  
pp. 5815-5823 ◽  
Author(s):  
Xiaolan Wang ◽  
Beibei Liu ◽  
Yafeng Dou ◽  
Hongjie Fan ◽  
Shaohui Wang ◽  
...  

ABSTRACTRiemerella anatipestiferis a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of theAS87_01735gene significantly decreased the bacterial virulence ofR. anatipestiferstrain Yb2 (mutant RA625). TheAS87_01735gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+salvage pathway. In this study, theAS87_01735gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated thatR. anatipestiferPncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncAin this study) showed a similar growth rate but decreased NAD+quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncAimmunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that theR. anatipestiferAS87_01735gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncAmutant can be used as a novel live vaccine candidate.IMPORTANCERiemerella anatipestiferis reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. ThepncAgene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+salvage pathway. In this study, we identified and characterized thepncA-homologous geneAS87_01735inR. anatipestiferstrain Yb2.R. anatipestiferPncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of thepncAmutant Yb2ΔpncAled to a decrease in the NAD+content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncAimmunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence ofR. anatipestiferand that the Yb2ΔpncAmutant can be used as a novel live vaccine candidate.


2018 ◽  
Vol 200 (15) ◽  
Author(s):  
Blake Ushijima ◽  
Claudia C. Häse

ABSTRACTChemotaxis, the directed movement toward or away from a chemical signal, can be essential to bacterial pathogens for locating hosts or avoiding hostile environments. The coral pathogenVibrio coralliilyticuschemotaxes toward coral mucus; however, chemotaxis has not been experimentally demonstrated to be important for virulence. To further examine this, in-frame mutations were constructed in genes predicted to be important forV. coralliilyticuschemotaxis. MostVibriogenomes contain multiple homologs of various chemotaxis-related genes, and two paralogs of each forcheB,cheR, andcheAwere identified. Based on single mutant analyses, the paralogscheB2,cheR2, andcheA1were essential for chemotaxis in laboratory assays. As predicted, the ΔcheA1and ΔcheR2strains had a smooth-swimming pattern, while the ΔcheB2strain displayed a zigzag pattern when observed under light microscopy. However, these mutants, unlike the parent strain, were unable to chemotax toward the known attractants coral mucus, dimethylsulfoniopropionate, andN-acetyl-d-glucosamine. The ΔcheB2strain and an aflagellate ΔfliG1strain were avirulent to coral, while the ΔcheA1and ΔcheR2strains were hypervirulent (90 to 100% infection within 14 h on average) compared to the wild-type strain (66% infection within 36 h on average). Additionally, the ΔcheA1and ΔcheR2strains appeared to better colonize coral fragments than the wild-type strain. These results suggest that although chemotaxis may be involved with infection (the ΔcheB2strain was avirulent), a smooth-swimming phenotype is important for bacterial colonization and infection. This study provides valuable insight into understandingV. coralliilyticuspathogenesis and how this pathogen may be transmitted between hosts.IMPORTANCECorals are responsible for creating the immense structures that are essential to reef ecosystems; unfortunately, pathogens like the bacteriumVibrio coralliilyticuscan cause fatal infections of reef-building coral species. However, compared to related human pathogens, the mechanisms by whichV. coralliilyticusinitiates infections and locates new coral hosts are poorly understood. This study investigated the effects of chemotaxis, the directional swimming in response to chemical signals, and bacterial swimming patterns on infection of the coralMontipora capitata. Infection experiments with different mutant strains suggested that a smooth-swimming pattern resulted in hypervirulence. These results demonstrate that the role of chemotaxis in coral infection may not be as straightforward as previously hypothesized and provide valuable insight intoV. coralliilyticuspathogenesis.


2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Elodie Cuenot ◽  
Transito Garcia-Garcia ◽  
Thibaut Douche ◽  
Olivier Gorgette ◽  
Pascal Courtin ◽  
...  

ABSTRACTClostridium difficileis the leading cause of antibiotic-associated diarrhea in adults. During infection,C. difficilemust detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC ofC. difficileis an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion ofprkCaffects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkCmutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkCmutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkCmutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority ofC. difficileproteins associated with the cell wall were less abundant in the ΔprkCmutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkCmutant had a colonization delay that did not significantly affect overall virulence.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Jan Kampf ◽  
Jan Gerwig ◽  
Kerstin Kruse ◽  
Robert Cleverley ◽  
Miriam Dormeyer ◽  
...  

ABSTRACT Biofilm formation by Bacillus subtilis requires the expression of genes encoding enzymes for extracellular polysaccharide synthesis and for an amyloid-like protein. The master regulator SinR represses all the corresponding genes, and repression of these key biofilm genes is lifted when SinR interacts with its cognate antagonist proteins. The YmdB phosphodiesterase is a recently discovered factor that is involved in the control of SinR activity: cells lacking YmdB exhibit hyperactive SinR and are unable to relieve the repression of the biofilm genes. In this study, we have examined the dynamics of gene expression patterns in wild-type and ymdB mutant cells by microfluidic analysis coupled to time-lapse microscopy. Our results confirm the bistable expression pattern for motility and biofilm genes in the wild-type strain and the loss of biofilm gene expression in the mutant. Moreover, we demonstrated dynamic behavior in subpopulations of the wild-type strain that is characterized by switches in sets of the expressed genes. In order to gain further insights into the role of YmdB, we isolated a set of spontaneous suppressor mutants derived from ymdB mutants that had regained the ability to form complex colonies and biofilms. Interestingly, all of the mutations affected SinR. In some mutants, large genomic regions encompassing sinR were deleted, whereas others had alleles encoding SinR variants. Functional and biochemical studies with these SinR variants revealed how these proteins allowed biofilm gene expression in the ymdB mutant strains. IMPORTANCE Many bacteria are able to choose between two mutually exclusive lifestyles: biofilm formation and motility. In the model bacterium Bacillus subtilis, this choice is made by each individual cell rather than at the population level. The transcriptional repressor SinR is the master regulator in this decision-making process. The regulation of SinR activity involves complex control of its own expression and of its interaction with antagonist proteins. We show that the YmdB phosphodiesterase is required to allow the expression of SinR-repressed genes in a subpopulation of cells and that such subpopulations can switch between different SinR activity states. Suppressor analyses revealed that ymdB mutants readily acquire mutations affecting SinR, thus restoring biofilm formation. These findings suggest that B. subtilis cells experience selective pressure to form the extracellular matrix that is characteristic of biofilms and that YmdB is required for the homeostasis of SinR and/or its antagonists.


2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


Sign in / Sign up

Export Citation Format

Share Document