scholarly journals Glutamate Decarboxylase-Dependent Acid Resistance in Brucella spp.: Distribution and Contribution to Fitness under Extremely Acidic Conditions

2014 ◽  
Vol 81 (2) ◽  
pp. 578-586 ◽  
Author(s):  
Maria Alessandra Damiano ◽  
Daniela Bastianelli ◽  
Sascha Al Dahouk ◽  
Stephan Köhler ◽  
Axel Cloeckaert ◽  
...  

ABSTRACTBrucellais an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new speciesBrucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genusBrucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus,Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains ofBrucella ceti,Brucella pinnipedialis, and newly described species (B. microti,Brucella inopinataBO1,B. inopinata-like BO2, andBrucellasp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistantin vitrothan classical terrestrial brucellae. Expression intransof thegadlocus from representativeBrucellaspecies in theEscherichia coliMG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypicalBrucellaspecies may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latterBrucellastrains fromOchrobactrumand from classical terrestrial pathogenicBrucellaspecies, which are GAD negative.

2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2013 ◽  
Vol 81 (11) ◽  
pp. 4192-4199 ◽  
Author(s):  
Y N. Nguyen ◽  
Haiqing Sheng ◽  
Rambabu Dakarapu ◽  
John R. Falck ◽  
Carolyn J. Hovde ◽  
...  

ABSTRACTThe human pathogen enterohemorrhagicEscherichia coli(EHEC) O157:H7 colonizes the rectoanal junction (RAJ) in cattle, its natural reservoir. Colonization at the RAJ poses a serious risk for fecal shedding and contamination of the environment. We previously demonstrated that EHEC senses acyl-homoserine lactones (AHLs) produced by the microbiota in the rumen to activate thegadacid resistance genes necessary for survival through the acidic stomachs in cattle and to repress the locus of enterocyte effacement (LEE) genes important for colonization of the RAJ, but unnecessary in the rumen. Devoid of AHLs, the RAJ is the prominent site of colonization of EHEC in cattle. To determine if the presence of AHLs in the RAJ could repress colonization at this site, we engineered EHEC to express theYersinia enterocoliticaAHL synthase geneyenI, which constitutively produces AHLs, to mimic a constant exposure of AHLs in the environment. TheyenI+EHEC produces oxo-C6-homoserine lactone (oxo-C6-HSL) and had a significant reduction in LEE expression, effector protein secretion, and attaching and effacing (A/E) lesion formationin vitrocompared to the wild type (WT). TheyenI+EHEC also activated expression of thegadgenes. To assess whether AHL production, which decreases LEE expression, would decrease RAJ colonization by EHEC, cattle were challenged at the RAJ with WT oryenI+EHEC. Although theyenI+EHEC colonized the RAJ with efficiency equal to that of the WT, there was a trend for the cattle to shed the WT strain longer than theyenI+EHEC.


2014 ◽  
Vol 83 (1) ◽  
pp. 346-353 ◽  
Author(s):  
Ji Yang ◽  
Thomas W. Russell ◽  
Dianna M. Hocking ◽  
Jennifer K. Bender ◽  
Yogitha N. Srikhanta ◽  
...  

EnterohemorrhagicEscherichia coli(EHEC) O157:H7 causes bloody diarrhea and hemolytic-uremic syndrome (HUS) and is the most prevalentE. coliserotype associated with food-borne illness worldwide. This pathogen is transmitted via the fecal-oral route and has a low infectious dose that has been estimated to be between 10 and 100 cells. We and others have previously identified three prophage-encoded AraC-like transcriptional regulators, PatE, PsrA, and PsrB in the EHEC O157:H7 EDL933 strain. Our analysis showed that PatE plays an important role in facilitating survival of EHEC under a number of acidic conditions, but the contribution of PsrA and PsrB to acid resistance (AR) was unknown. Here, we investigated the involvement of PsrA and PsrB in the survival ofE. coliO157:H7 in acid. Our results showed that PsrB, but not PsrA, enhanced the survival of strain EDL933 under various acidic conditions. Transcriptional analysis using promoter-lacZreporters and electrophoretic mobility shift assays demonstrated that PsrB activates transcription of thehdeAoperon, which encodes a major acid stress chaperone, by interacting with its promoter region. Furthermore, using a mouse model, we showed that expression of PsrB significantly enhanced the ability of strain EDL933 to overcome the acidic barrier of the mouse stomach. Taken together, our results indicate that EDL933 acquired enhanced acid tolerance via horizontally acquired regulatory genes encoding transcriptional regulators that activate its AR machinery.


2018 ◽  
Vol 7 (9) ◽  
Author(s):  
Allison L. Denny ◽  
Susan E. Arruda

Draft genomes of two strains of Escherichia coli, FP2 and FP3, isolated from the feces of the Canada goose (Branta canadensis), were sequenced. Genome sizes were 5.26 Mb with a predicted G+C content of 50.54% (FP2) and 5.07 Mb with a predicted G+C content of 50.41% (FP3).


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


1982 ◽  
Vol 57 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kamal S. Paul ◽  
Eric T. Whalley ◽  
Christine Forster ◽  
Richard Lye ◽  
John Dutton

✓ The authors have studied the ability of prostacyclin to reverse contractions of human basilar arteries in vitro that were induced by a wide range of substances implicated in the etiology of cerebral arterial spasm. Prostacyclin (10−10 to 10−6M) caused a dose-related reversal of contractions induced by 5-hydroxytryptamine, noradrenaline, angiotensin II, prostaglandin (PG)F2α, and U-46619 (a thromboxane-A2 mimetic). These agents were tested at concentrations or volumes that produced almost maximum or maximum responses and those that produced approximately 50% of the maximum response. Contractions induced by maximum concentrations of angiotensin II and U-46619 were least affected by prostacyclin. In addition, contractions induced by thromboxane-A2 generated from guinea-pig lung were reversed in a dose-dependent fashion by prostacyclin. This ability of prostacyclin to physiologically antagonize contractions of the human basilar artery in vitro induced by high concentrations of various spasmogenic agents suggests that such a potent vasodilator agent or more stable analogue may be of value in the treatment of such disorders as cerebral arterial spasm following subarachnoid hemorrhage.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2007 ◽  
Vol 51 (4) ◽  
pp. 1481-1486 ◽  
Author(s):  
C. Andrew DeRyke ◽  
Mary Anne Banevicius ◽  
Hong Wei Fan ◽  
David P. Nicolau

ABSTRACT The purpose of this study was to examine the in vivo efficacies of meropenem and ertapenem against extended-spectrum-β-lactamase (ESBL)-producing isolates with a wide range of MICs. Human-simulated dosing regimens in mice were designed to approximate the free drug percent time above the MIC (fT>MIC) observed for humans following meropenem at 1 g every 8 h and ertapenem at 1 g every 24 h. An in vivo neutropenic mouse thigh infection model was used to examine the bactericidal effects against 31 clinical ESBL Escherichia coli and Klebsiella pneumoniae isolates and 2 non-ESBL isolates included for comparison at a standard 105 inoculum. Three isolates were examined at a high 107 inoculum as well. Meropenem displayed greater in vitro potency, with a median MIC (range) (μg/ml) of 0.125 (0.03 to 32), than did ertapenem, with 0.5 (0.012 to 128). Seven of the 31 ESBL isolates were removed from the efficacy analysis due to their inability to establish infection in the mouse model. When MICs were ≤1.5 μg/ml for ertapenem (≤0.5 μg/ml for meropenem), similar reductions in CFU (≈ 2-log kill) were observed for both ertapenem (fT>MIC ≥ 23%) and meropenem (fT>MIC ≥ 75%). Ertapenem showed bacterial regrowth for seven of eight isolates, with MICs of ≥2 μg/ml (fT>MIC ≤ 20%), while meropenem displayed antibacterial potency that varied from a static effect to a 1-log bacterial reduction in these isolates (fT>MIC = 30 to 65%). At a 107 inoculum, both agents eradicated bacteria due to adequate exposures (fT>MIC = 20 to 45%). Due to low MICs, no difference in bacterial kill was noted for the majority of ESBL isolates tested. However, for isolates with raised ertapenem MICs of ≥2 μg/ml, meropenem displayed sustained efficacy due to its greater in vitro potency and higher resultant fT>MIC.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
...  

ABSTRACT Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro. We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document