scholarly journals A Surface-Focused Biotinylation Procedure Identifies the Yersinia pestis Catalase KatY as a Membrane-Associated but Non-Surface-Located Protein

2007 ◽  
Vol 73 (18) ◽  
pp. 5750-5759 ◽  
Author(s):  
Tanya Myers-Morales ◽  
Clarissa Cowan ◽  
Michael E. Gray ◽  
Christine R. Wulff ◽  
Carol E. Parker ◽  
...  

ABSTRACT This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37°C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 109 cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.

2019 ◽  
Vol 36 (1) ◽  
pp. 11-15
Author(s):  
Ashikun Nabi ◽  
Fatema Moni Chowdhury ◽  
Zeenat Jahan ◽  
Md Murshed Hasan Sarkar ◽  
Fazle Rabbi ◽  
...  

Surface proteins of Escherichia coli O157:H7, those that are prominent in antigen-antibody reactions among different strains, were found to provide protection against E. coli O157 challenge in mice. Three strains such as E. coli O157:H7 NCTC reference strain and two other environmentally isolated strains have been used in this study. New Zealand rabbits were immunized with surface proteins of NCTC reference strain and immunoblot analysis was performed against the surface proteins of all three strains. Immunoblot analysis revealed that a 94 kDa surface protein of E. coli O157:H7 could be the possible candidate for the protective activity experiment. Group of mice receiving the 94 kDa surface protein through both intraperitoneal and intranasal routes survived the challenge experiment. Whereas, all the control mice died within a couple of days. Mice challenge experiment clearly demonstrated the strong potential of the 94 kDa protein in the immunized mice. The data of this study provide us with a basis for further characterization of 94 kDa surface protein of E. coli O157:H7 as a protective antigen. Bangladesh J Microbiol, Volume 36 Number 1 June 2019, pp 11-15


2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Win-Yan Chan ◽  
Claire Entwisle ◽  
Giuseppe Ercoli ◽  
Elise Ramos-Sevillano ◽  
Ann McIlgorm ◽  
...  

ABSTRACTCurrent vaccination againstStreptococcus pneumoniaeuses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared fromS. pneumoniaeTIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains ofS. pneumoniaewere opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologousS. pneumoniaestrains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection againstS. pneumoniae.


1990 ◽  
Vol 171 (1) ◽  
pp. 63-73 ◽  
Author(s):  
R D Shahin ◽  
M J Brennan ◽  
Z M Li ◽  
B D Meade ◽  
C R Manclark

Immunization with the 69-kD outer membrane protein (OMP) of Bordetella pertussis protected neonatal mice against lethal respiratory challenge with B. pertussis 18323. Active immunization elicited a serum IgG anti-69-kD OMP response at the time of challenge, with IgG anti-69-kD OMP antibodies detected in bronchoalveolar lavage fluid after challenge. Intravenous administration of BPE8, a monoclonal IgG1 anti-69-kD OMP, also protected young mice against B. pertussis challenge. Intravenously injected BPE8 was detected in the lungs of mice at the time of aerosol challenge, suggesting that the presence of specific antibody in the lungs may mediate protection. Thus the 69-kD OMP of B. pertussis is a protective antigen in mice that elicits specific serum antibody that can transude to the lung. The 69-kD OMP was detected in a preparation of a Takeda acellular vaccine by immunoblot analysis and a serum antibody response to the 69-kD OMP was observed in 18-mo-old children boosted with this preparation of Japanese acellular vaccine. Our results demonstrate that the B. pertussis 69-kD OMP is a protective antigen in animals, is immunogenic in humans, and is present in a preparation of acellular pertussis vaccine that is widely used in Japan. These findings indicate that the 69-kD OMP should be seriously considered as a candidate for inclusion in new formulations of antigenically defined acellular pertussis vaccines.


1993 ◽  
Author(s):  
Guy H. Palmer ◽  
Eugene Pipano ◽  
Terry F. McElwain ◽  
Varda Shkap ◽  
Donald P. Knowles, Jr.

Anaplasmosis is an arthropod+borne disease of cattle caused by the rickettsia Anaplasma marginale and an impediment to efficient production of healthy livestock in both Israel and the United States. Our research focuses on development of a recombinant membrane surface protein (MSP) immunogen to replace current vaccines derived from the blood of infected cattle. The risk of widespread transmission of both known and newly emergent pathogens has prevented licensure of live blood-based vaccines in the U.S. and is a major concern for their continued use in Israel. Briefly, we accomplished the following in our BARD supported research: i) characterization of the intramolecular and intermolecular relationships of the native Major Surface Proteins (MSP) in the outer membrane; ii) expression, purification, and epitope characterization of the recombinant MSP-2, MSP-3, MSP-4, and MSP-5 proteins required to construct the recombinant ISCOM; iii) demonstration that the outer membrane-Quil A induces CD4+ T lymphocytes specific for the outer membrane polypeptides; iv) identification of CD4+ T lymphocytes that recognize outer membrane polypeptide epitopes conserved among other wise antigenically distinct strains; v) determination that immunization with the outer membrane-Quil A construct does not affect the ability of ticks to acquire or transmit A. marginale; and vi) demonstration that the outer membrane-Quil A construct induces complete protection against rickettsemia upon homologous challenge and significant protection against challenge with antigenically distinct strains, including tick transmission. Importantly, the level of protection against homologous challenge in the MSP vaccinates was comparable to that induced by live blood-based vaccines and demonstrates that development of a new generation of vaccines is feasible.


1995 ◽  
Vol 41 (6) ◽  
pp. 525-532 ◽  
Author(s):  
S Peter Howard ◽  
Heather G. Meiklejhon

Mutations in the exeC-N operon of Aeromonas hydrophila, which block extracellular protein secretion, also result in large decreases in the level of the major outer membrane porin, protein II. Immunoblot analysis demonstrated that the porin missing from the outer membrane of the mutant was not accumulating elsewhere in the cell. Pulse-chase and immunoprecipitation analyses showed that the porin was as stable in the mutant as in the wild type, but that far less porin was synthesized in the exe mutants. The relationship between extracellular secretion involving the exe genes and the assembly of other outer membrane and surface proteins was also examined. Both the wild type and exeE mutants of A. hydrophila were capable of assembling the protein I and protein III porins under inducing conditions. Aeromonas sohria As9071, which contains a surface array protein, could secrete A. hydrophila aerolysin and required homologues of the A. hydrophila exe genes to do so; however, an exe− derivative of this bacteria was unaffected in its ability to assemble its surface array. These results demonstrate that the exe genes are not required for general outer membrane protein assembly in these bacteria, but that the synthesis of protein II is specifically downregulated in the exe mutants.Key words: extracellular secretion, outer membrane assembly, surface layer, Aeromonas.


2002 ◽  
Vol 68 (12) ◽  
pp. 6172-6181 ◽  
Author(s):  
Marco Ventura ◽  
Ivana Jankovic ◽  
D. Carey Walker ◽  
R. David Pridmore ◽  
Ralf Zink

ABSTRACT We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family.


2012 ◽  
Vol 81 (1) ◽  
pp. 65-79 ◽  
Author(s):  
Amandeep Kahlon ◽  
Nore Ojogun ◽  
Stephanie A. Ragland ◽  
David Seidman ◽  
Matthew J. Troese ◽  
...  

Anaplasma phagocytophilum, a member of the familyAnaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle ofA. phagocytophilumis biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed thataph_0248(designatedasp14[14-kDaA. phagocytophilumsurface protein]) expression was upregulated the most duringA. phagocytophilumcellular invasion.asp14transcription was induced during transmission feeding ofA. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to theA. phagocytophilumsurface and was expressed duringin vivoinfection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathioneS-transferase (GST)–Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, anotherA. phagocytophiluminvasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among otherAnaplasmaandEhrlichiaspecies. These results identify Asp14 as anA. phagocytophilumsurface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection byA. phagocytophilumand otherAnaplasmataceaepathogens.


2002 ◽  
Vol 70 (2) ◽  
pp. 803-811 ◽  
Author(s):  
Sezgin Erdogan ◽  
Peter K. Fagan ◽  
Susanne R. Talay ◽  
Manfred Rohde ◽  
Patricia Ferrieri ◽  
...  

ABSTRACT Group B streptococci (GBS) express various surface antigens designated c, R, and X antigens. A new R-like surface protein from Streptococcus agalactiae strain Compton R has been identified by using a polyclonal antiserum raised against the R protein fraction of this strain to screen a lambda Zap library. DNA sequence analysis of positive clones allowed the prediction of the primary structure of a 105-kDa protein designated BPS protein (group B protective surface protein) that exhibited typical features of streptococcal surface proteins such as a signal sequence and a membrane anchor region but did not show significant similarity with other known sequences. Immunogold electron microscopy using a BPS-specific antiserum confirmed the surface location of BPS protein on S. agalactiae strain Compton R. Anti-BPS antibodies did not cross-react with R1 and R4 proteins expressed by two variant type III GBS strains but reacted with the parental streptococcal strain in Western blot and immunoprecipitation analyses. Separate R3 and BPS immunoprecipitation bands were observed when a cell extract of strain Compton R was tested with an antiserum against Compton R previously cross-absorbed to remove R4 antibodies. Immunization of mice with recombinant BPS protein by the subcutaneous route produced an efficient antigen-specific response, and immunized animals survived challenge with a lethal dose of a virulent strain. Therefore, BPS protein represents a new R-like protective antigen of GBS.


2000 ◽  
Vol 278 (6) ◽  
pp. H2008-H2019 ◽  
Author(s):  
Anna Babinska ◽  
Michael V. Hogan ◽  
Tomasz Sobocki ◽  
Malgorzata B. Sobocka ◽  
Yigal H. Ehrlich ◽  
...  

Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[α32P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[α32P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca2+flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.


Sign in / Sign up

Export Citation Format

Share Document