scholarly journals Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688

2013 ◽  
Vol 80 (3) ◽  
pp. 1082-1090 ◽  
Author(s):  
Willem P. Dijkman ◽  
Marco W. Fraaije

ABSTRACTIn the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein fromMethylovorussp. strain MP688 inEscherichia coliand subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Steve Noone ◽  
Alison Branch ◽  
Melissa Sherring

Purpose Positive behavioural support (PBS) as a framework for delivering quality services is recognised in important policy documents (CQC, 2020; NICE, 2018), yet there is an absence in the literature on how this could be implemented on a large scale. The purpose of this paper is to describe a recent implementation of a workforce strategy to develop PBS across social care and health staff and family carers, within the footprint of a large integrated care system. Design/methodology/approach A logic model describes how an initial scoping exercise led to the production of a regional workforce strategy based on the PBS Competence Framework (2015). It shows how the creation of a regional steering group was able to coordinate important developmental stages and integrate multiple agencies into a single strategy to implement teaching and education in PBS. It describes the number of people who received teaching and education in PBS and the regional impact of the project in promoting cultural change within services. Findings This paper demonstrates a proof of concept that it is possible to translate the PBS Competency Framework (2015) into accredited courses. Initial scoping work highlighted the ineffectiveness of traditional training in PBS. Using blended learning and competency-based supervision and assessment, it was possible to create a new way to promote large-scale service developments in PBS supported by the governance of a new organisational structure. This also included family training delivered by family trainers. This builds on the ideas by Denne et al. (2020) that many of the necessary building blocks of implementation already exist within a system. Social implications A co-ordinated teaching and education strategy in PBS may help a wide range of carers to become more effective in supporting the people they care for. Originality/value This is the first attempt to describe the implementation of a framework for PBS within a defined geographical location. It describes the collaboration of health and social care planners and a local university to create a suite of courses built around the PBS coalition competency framework.


2020 ◽  
Vol 86 (16) ◽  
Author(s):  
Mario Viñambres ◽  
Marta Espada ◽  
Angel T. Martínez ◽  
Ana Serrano

ABSTRACT The enzymatic production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) has gained interest in recent years, as FDCA is a renewable precursor of poly(ethylene-2,5-furandicarboxylate) (PEF). 5-Hydroxymethylfurfural oxidases (HMFOs) form a flavoenzyme family with genes annotated in a dozen bacterial species but only one enzyme purified and characterized to date (after heterologous expression of a Methylovorus sp. HMFO gene). This oxidase acts on both furfuryl alcohols and aldehydes and, therefore, is able to catalyze the conversion of HMF into FDCA through 2,5-diformylfuran (DFF) and 2,5-formylfurancarboxylic acid (FFCA), with only the need of oxygen as a cosubstrate. To enlarge the repertoire of HMFO enzymes available, genetic databases were screened for putative HMFO genes, followed by heterologous expression in Escherichia coli. After unsuccessful trials with other bacterial HMFO genes, HMFOs from two Pseudomonas species were produced as active soluble enzymes, purified, and characterized. The Methylovorus sp. enzyme was also produced and purified in parallel for comparison. Enzyme stability against temperature, pH, and hydrogen peroxide, three key aspects for application, were evaluated (together with optimal conditions for activity), revealing differences between the three HMFOs. Also, the kinetic parameters for HMF, DFF, and FFCA oxidation were determined, the new HMFOs having higher efficiencies for the oxidation of FFCA, which constitutes the bottleneck in the enzymatic route for FDCA production. These results were used to set up the best conditions for FDCA production by each enzyme, attaining a compromise between optimal activity and half-life under different conditions of operation. IMPORTANCE HMFO is the only enzyme described to date that can catalyze by itself the three consecutive oxidation steps to produce FDCA from HMF. Unfortunately, only one HMFO enzyme is currently available for biotechnological application. This availability is enlarged here by the identification, heterologous production, purification, and characterization of two new HMFOs, one from Pseudomonas nitroreducens and one from an unidentified Pseudomonas species. Compared to the previously known Methylovorus HMFO, the new enzyme from P. nitroreducens exhibits better performance for FDCA production in wider pH and temperature ranges, with higher tolerance for the hydrogen peroxide formed, longer half-life during oxidation, and higher yield and total turnover numbers in long-term conversions under optimized conditions. All these features are relevant properties for the industrial production of FDCA. In summary, gene screening and heterologous expression can facilitate the selection and improvement of HMFO enzymes as biocatalysts for the enzymatic synthesis of renewable building blocks in the production of bioplastics.


mBio ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yi Lou ◽  
Jing Zhang ◽  
Guanghui Wang ◽  
Wenqin Fang ◽  
Shumin Wang ◽  
...  

Fusarium head blight (FHB), caused predominantly by Fusarium graminearum , is an economically devastating disease of a wide range of cereal crops. Our previous study identified F. graminearum Vps17, Vps5, Snx41, and Snx4 as PX domain-containing proteins that were involved in membrane trafficking mediating the fungal development and pathogenicity, but the identity and biological roles of the remaining members of this protein family remain unknown in this model phytopathogen.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Balasubramanian ◽  
Thozhuvur Govindaraman Loganathan ◽  
R. Srimath

Purpose The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications. Design/methodology/approach Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties. Findings The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers. Originality/value This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.


2012 ◽  
Vol 78 (15) ◽  
pp. 5093-5103 ◽  
Author(s):  
Dandan Chen ◽  
Qi Zhang ◽  
Qinglin Zhang ◽  
Peilin Cen ◽  
Zhinan Xu ◽  
...  

ABSTRACTFK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strainStreptomyces tsukubaensisby the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact thatS. tsukubaensisis amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks.


2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Justin X. Boeckman ◽  
Lauren Lessor ◽  
Jason J. Gill ◽  
Mei Liu

Klebsiella pneumoniae is an important human pathogen due to the wide range of infections it can cause and its emerging drug resistance. Isolation and characterization of phage infecting K. pneumoniae could be important for future therapeutic applications.


2014 ◽  
Vol 1025-1026 ◽  
pp. 1055-1061 ◽  
Author(s):  
M. Ourabia

An approach for modeling and numerical simulation of planar components using the edge line concept is developed. With this method, we develop an efficient modeling technique for microstrip discontinuities. The structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included showing the efficiency of the new method proposed.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 925 ◽  
Author(s):  
J Aislabie ◽  
G Lloyd-Jones

Pesticide fate in the environment is affected by microbial activity. Some pesticides are readily degraded by microorganisms, others have proven to be recalcitrant. A diverse group of bacteria, including members of the genera Alcaligenes, Flavobacterium, Pseudomonas and Rhodococcus, metabolize pesticides. Microbial degradation depends not only on the presence of microbes with the appropriate degradative enzymes, but also on a wide range of environmental parameters. This review describes recent advances in biodegradation of pesticides by addressing the biology and molecular characterization of some pesticide degrading bacteria.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Zhangong Yang ◽  
Wankui Jiang ◽  
Xiaohan Wang ◽  
Tong Cheng ◽  
Desong Zhang ◽  
...  

ABSTRACTIprodione [3-(3,5-dichlorophenyl)N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide] is a highly effective broad-spectrum dicarboxamide fungicide. Several bacteria with iprodione-degrading capabilities have been reported; however, the enzymes and genes involved in this process have not been characterized. In this study, an iprodione-degrading strain,Paenarthrobactersp. strain YJN-5, was isolated and characterized. Strain YJN-5 degraded iprodione through the typical pathway, with hydrolysis of its N-1 amide bond toN-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine as the initial step. TheipaHgene, encoding a novel amidase responsible for this step, was cloned from strain YJN-5 by the shotgun method. IpaH shares the highest similarity (40%) with an indoleacetamide hydrolase (IAHH) fromBradyrhizobium diazoefficiensUSDA 110. IpaH displayed maximal enzymatic activity at 35°C and pH 7.5, and it was not a metalloamidase. ThekcatandKmof IpaH against iprodione were 22.42 s−1and 7.33 μM, respectively, and the catalytic efficiency value (kcat/Km) was 3.09 μM−1s−1. IpaH has a Ser-Ser-Lys motif, which is conserved among members of the amidase signature family. The replacement of Lys82, Ser157, and Ser181 with alanine in IpaH led to the complete loss of enzymatic activity. Furthermore, strain YJN-5M lost the ability to degrade iprodione, suggesting thatipaHis the only gene responsible for the initial iprodione degradation step. TheipaHgene could also be amplified from another previously reported iprodione-degrading strain,Microbacteriumsp. strain YJN-G. The sequence similarity between the two IpaHs at the amino acid level was 98%, indicating that conservation of IpaH exists in different strains.IMPORTANCEIprodione is a widely used dicarboxamide fungicide, and its residue has been frequently detected in the environment. The U.S. Environmental Protection Agency has classified iprodione as moderately toxic to small animals and a probable carcinogen to humans. Bacterial degradation of iprodione has been widely investigated. Previous studies demonstrate that hydrolysis of its N-1 amide bond is the initial step in the typical bacterial degradation pathway of iprodione; however, enzymes or genes involved in iprodione degradation have yet to be reported. In this study, a novelipaHgene encoding an amidase responsible for the initial degradation step of iprodione inPaenarthrobactersp. strain YJN-5 was cloned. In addition, the characteristics and key amino acid sites of IpaH were investigated. These findings enhance our understanding of the microbial degradation mechanism of iprodione.


Author(s):  
Alessa Lappe ◽  
Nina Jankowski ◽  
Annemie Albrecht ◽  
Katja Koschorreck

Abstract The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2–9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. Key points • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.


Sign in / Sign up

Export Citation Format

Share Document