scholarly journals Characterization of Planctomyces limnophilus and Development of Genetic Tools for Its Manipulation Establish It as a Model Species for the Phylum Planctomycetes

2011 ◽  
Vol 77 (16) ◽  
pp. 5826-5829 ◽  
Author(s):  
Christian Jogler ◽  
Frank Oliver Glöckner ◽  
Roberto Kolter

ABSTRACTPlanctomycetesrepresent a remarkable clade in the domainBacteriabecause they play crucial roles in global carbon and nitrogen cycles and display cellular structures that closely parallel those of eukaryotic cells. Studies onPlanctomyceteshave been hampered by the lack of genetic tools, which we developed forPlanctomyces limnophilus.

2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Celina Frank ◽  
Dieter Jendrossek

ABSTRACT Acidocalcisomes are membrane-enclosed, polyphosphate-containing acidic organelles in lower Eukaryota but have also been described for Agrobacterium tumefaciens (M. Seufferheld, M. Vieira, A. Ruiz, C. O. Rodrigues, S. Moreno, and R. Docampo, J Biol Chem 278:29971–29978, 2003, https://doi.org/10.1074/jbc.M304548200). This study aimed at the characterization of polyphosphate-containing acidocalcisomes in this alphaproteobacterium. Unexpectedly, fluorescence microscopic investigation of A. tumefaciens cells using fluorescent dyes and localization of constructed fusions of polyphosphate kinases (PPKs) and of vacuolar H+-translocating pyrophosphatase (HppA) with enhanced yellow fluorescent protein (eYFP) suggested that acidocalcisomes and polyphosphate are different subcellular structures. Acidocalcisomes and polyphosphate granules were frequently located close together, near the cell poles. However, they never shared the same position. Mutant strains of A. tumefaciens with deletions of both ppk genes (Δppk1 Δppk2) were unable to form polyphosphate but still showed cell pole-located eYFP-HppA foci and could be stained with MitoTracker. In conclusion, A. tumefaciens forms polyP granules that are free of a surrounding membrane and thus resemble polyP granules of Ralstonia eutropha and other bacteria. The composition, contents, and function of the subcellular structures that are stainable with MitoTracker and harbor eYFP-HppA remain unclear. IMPORTANCE The uptake of alphaproteobacterium-like cells by ancestors of eukaryotic cells and subsequent conversion of these alphaproteobacterium-like cells to mitochondria are thought to be key steps in the evolution of the first eukaryotic cells. The identification of acidocalcisomes in two alphaproteobacterial species some years ago and the presence of homologs of the vacuolar proton-translocating pyrophosphatase HppA, a marker protein of the acidocalcisome membrane in eukaryotes, in virtually all species within the alphaproteobacteria suggest that eukaryotic acidocalcisomes might also originate from related structures in ancestors of alphaproteobacterial species. Accordingly, alphaproteobacterial acidocalcisomes and eukaryotic acidocalcisomes should have similar features. Since hardly any information is available on bacterial acidocalcisomes, this study aimed at the characterization of organelle-like structures in alphaproteobacterial cells, with A. tumefaciens as an example.


1997 ◽  
Vol 11 (2) ◽  
pp. 191-215 ◽  
Author(s):  
Michel G. J. den Elzen ◽  
Arthur H. W. Beusen ◽  
Jan Rotmans

2021 ◽  
Author(s):  
Josué A. Rodríguez-Ramos ◽  
Mikayla A. Borton ◽  
Bridget B. McGivern ◽  
Garrett J. Smith ◽  
Lindsey M. Solden ◽  
...  

Abstract Background:Rivers serve as a nexus for nutrient transfer between terrestrial and marine ecosystems and as such, have a significant impact on global carbon and nitrogen cycles. In river ecosystems, the sediments found within the hyporheic zone are microbial hotspots that can account for a significant portion of ecosystem respiration and have profound impacts on system biogeochemistry. Despite this, studies using genome-resolved analyses linking microbial and viral communities to nitrogen and carbon biogeochemistry are limited.Results:Here, we characterized the microbial and viral communities of Columbia River hyporheic zone sediments to reveal the metabolisms that actively cycle carbon and nitrogen. Using genome-resolved metagenomics, we created the Hyporheic Uncultured Microbial and Viral (HUM-V) database, containing a dereplicated database of 55 microbial Metagenome-Assembled Genomes (MAGs), representing 12 distinct phyla. We also sampled 111 viral Metagenome Assembled Genomes (vMAGs) from 26 distinct and novel genera. The HUM-V recruited metaproteomes from these same samples, providing the first inventory of microbial gene expression in hyporheic zone sediments. Combining this data with metabolite data, we generated a conceptual model where heterotrophic and autotrophic metabolisms co-occur to drive an integrated carbon and nitrogen cycle, revealing microbial sources and sinks for carbon dioxide and ammonium in these sediments. We uncovered the metabolic handoffs underpinning these processes including mutualistic nitrification by Thermoproteota (formerly Thaumarchaeota) and Nitrospirota, as well as identified possible cooperative and cheating behavior impacting nitrogen mineralization. Finally, by linking vMAGs to microbial genome hosts, we reveal possible viral controls on microbial nitrification and organic carbon degradation.Conclusions:Our multi-omics analyses provide new mechanistic insight into coupled carbon-nitrogen cycling in the hyporheic zone. This is a key step in developing predictive hydrobiogeochemical models that account for microbial cross-feeding and viral influences over potential and expressed microbial metabolisms. Furthermore, the publicly available HUM-V genome resource can be queried and expanded by researchers working in other ecosystems to assess the transferability of our results to other parts of the globe.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Daniel Murante ◽  
Deborah A. Hogan

ABSTRACT In eukaryotic cells, mitochondria are responsible for the synthesis of ATP using power generated by the electron transport chain (ETC). While much of what is known about mitochondria has been gained from a study of a small number of model species, including the yeast Saccharomyces cerevisiae, the general mechanisms of mitochondrial respiration have been recognized as being highly conserved across eukaryotes. Now, Sun et al. (N. Sun, R. S. Parrish, R. A. Calderone, and W. A. Fonzi, mBio 10:e00300-19, 2019, https://doi.org/10.1128/mBio.00300-19) take the next steps in understanding mitochondrial function by identifying proteins that are unique to a smaller phylogenetic group of microbes. Using the combination of in silico, biochemical, and microbiological assays, Sun and colleagues identified seven genes that are unique to the CTG fungal clade, which contains multiple important human pathogens, including Candida albicans, and showed that they are required for full ETC function during respiratory metabolism. Because respiratory metabolism is critical for fungal pathogenesis, these clade-specific mitochondrial factors may represent novel therapeutic targets.


2021 ◽  
Author(s):  
Dennis Reichert ◽  
Helena Schepers ◽  
Julian Simke ◽  
Horst Lechner ◽  
Wolfgang Dörner ◽  
...  

The spatial and temporal control of gene expression at the post-transcriptional level is essential in eukaryotic cells and developing multicellular organisms. In recent years optochemical and optogenetic tools have enabled...


2012 ◽  
Vol 56 (8) ◽  
pp. 4450-4458 ◽  
Author(s):  
Mark Veleba ◽  
Paul G. Higgins ◽  
Gerardo Gonzalez ◽  
Harald Seifert ◽  
Thamarai Schneiders

ABSTRACTTranscriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes.Klebsiella pneumoniaeis a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription oframAis associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the availableKlebsiellagenome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded inK. pneumoniae,Enterobactersp. 638,Serratia proteamaculans568, andEnterobacter cloacae. We show that the overexpression ofrarAresults in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show thatrarA(MGH 78578 KPN_02968) and its neighboring efflux pump operonoqxAB(KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest thatrarAoverexpression upregulates theoqxABefflux pump. Additionally, it appears thatoqxR, encoding a GntR-type regulator adjacent to theoqxABoperon, is able to downregulate the expression of theoqxABefflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.


2010 ◽  
Vol 9 (5) ◽  
pp. 795-805 ◽  
Author(s):  
Nadine Zekert ◽  
Daniel Veith ◽  
Reinhard Fischer

ABSTRACT Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Nipul Patel ◽  
Theresa O'Malley ◽  
Yong-Kang Zhang ◽  
Yi Xia ◽  
Bjorn Sunde ◽  
...  

ABSTRACT We identified a novel 6-benzyl ether benzoxaborole with potent activity against Mycobacterium tuberculosis. The compound had an MIC of 2 μM in liquid medium. The compound was also able to prevent growth on solid medium at 0.8 μM and was active against intracellular bacteria (50% inhibitory concentration [IC50] = 3.6 μM) without cytotoxicity against eukaryotic cells (IC50 > 100 μM). We isolated resistant mutants (MIC ≥ 100 μM), which had mutations in Rv1683, Rv3068c, and Rv0047c.


2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


Sign in / Sign up

Export Citation Format

Share Document