scholarly journals In vivo formation of gene fusions in Pseudomonas putida and construction of versatile broad-host-range vectors for direct subcloning of Mu d1 and Mu d2 fusions.

1987 ◽  
Vol 53 (7) ◽  
pp. 1649-1654 ◽  
Author(s):  
V Simon ◽  
W Schumann
Gene ◽  
1983 ◽  
Vol 26 (2-3) ◽  
pp. 273-282 ◽  
Author(s):  
Miroslawa M. Bagdasarian ◽  
Egon Amann ◽  
Rudolf Lurz ◽  
Beate Rückert ◽  
Michael Bagdasarian

2006 ◽  
Vol 51 (2) ◽  
pp. 796-799 ◽  
Author(s):  
Ângela Novais ◽  
Rafael Cantón ◽  
Raquel Moreira ◽  
Luísa Peixe ◽  
Fernando Baquero ◽  
...  

ABSTRACT The spread of CTX-M-1-like enzymes in Spain is associated with particular plasmids of broad-host-range IncN (bla CTX-M-32, bla CTX-M-1), IncL/M (bla CTX-M-1), and IncA/C2 (bla CTX-M-3) or narrow-host-range IncFII (bla CTX-M-15). The identical genetic surroundings of bla CTX-M-32 and bla CTX-M-1 and their locations on related 40-kb IncN plasmids indicate the in vivo evolution of this element.


2018 ◽  
Vol 62 (4) ◽  
pp. e02128-17 ◽  
Author(s):  
Sead Hadziabdic ◽  
Jennie Fischer ◽  
Burkhard Malorny ◽  
Maria Borowiak ◽  
Beatriz Guerra ◽  
...  

ABSTRACT The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the blaNDM-1-carrying IncA/C2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor (S. Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta+) S. Paratyphi B (13-SA01617), referred to here as S. Paratyphi B (d-Ta+)] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S. Corvallis reisolates as well as plasmid acquisition in S. Paratyphi B (d-Ta+) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S. Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S. Corvallis is significantly higher than that of S. Paratyphi (d-Ta+) and is not hampered by S. Paratyphi (d-Ta+). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker blaNDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S. Corvallis into a broiler flock, the pRH-1238 plasmid could persist and spread to a broad host range even in the absence of antibiotic pressure.


2012 ◽  
Vol 161 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Sonja Christina Troeschel ◽  
Stephan Thies ◽  
Olga Link ◽  
Catherine Isabell Real ◽  
Katja Knops ◽  
...  

1999 ◽  
Vol 181 (9) ◽  
pp. 2807-2815 ◽  
Author(s):  
Grazyna Jagura-Burdzy ◽  
Kalliope Kostelidou ◽  
Jessica Pole ◽  
Dheeraj Khare ◽  
Anthony Jones ◽  
...  

ABSTRACT The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC andkorB, belong to the parA and parBfamilies, respectively, of genome partitioning functions. BothkorB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incCalone caused rapid displacement of RK2. Using two different reporter systems, we show that incC modulates the action of KorB. Using promoter fusions to the reporter gene xylE, we show that incC potentiates the repression of transcription bykorB. This modulation of korB activity was only observed with incC1, which encodes the full-length IncC (364 amino acids [aa]), whereas no effect was observed withincC2, which encodes a polypeptide of 259 aa that lacks the N-terminal 105 aa. Using bacterial extracts with IncC1 and IncC2 or IncC1 purified through the use of a His6 tail and Ni-agarose chromatography, we showed that IncC1 potentiates the binding of KorB to DNA at representative KorB operators. The ability of IncC to stabilize KorB-DNA complexes suggests that these two proteins work together in the global regulation of many operons on the IncP-1 genomes, as well in plasmid partitioning.


Plasmid ◽  
1993 ◽  
Vol 29 (2) ◽  
pp. 142-146 ◽  
Author(s):  
J.M. Verger ◽  
M. Grayon ◽  
E. Chaslus-Dancla ◽  
M. Meurisse ◽  
J.P. Lafont

Sign in / Sign up

Export Citation Format

Share Document