scholarly journals In Vivo Transfer and Microevolution of Avian Native IncA/C2 blaNDM-1-Carrying Plasmid pRH-1238 during a Broiler Chicken Infection Study

2018 ◽  
Vol 62 (4) ◽  
pp. e02128-17 ◽  
Author(s):  
Sead Hadziabdic ◽  
Jennie Fischer ◽  
Burkhard Malorny ◽  
Maria Borowiak ◽  
Beatriz Guerra ◽  
...  

ABSTRACT The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the blaNDM-1-carrying IncA/C2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor (S. Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta+) S. Paratyphi B (13-SA01617), referred to here as S. Paratyphi B (d-Ta+)] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S. Corvallis reisolates as well as plasmid acquisition in S. Paratyphi B (d-Ta+) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S. Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S. Corvallis is significantly higher than that of S. Paratyphi (d-Ta+) and is not hampered by S. Paratyphi (d-Ta+). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker blaNDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S. Corvallis into a broiler flock, the pRH-1238 plasmid could persist and spread to a broad host range even in the absence of antibiotic pressure.

2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Sead Hadziabdic ◽  
Jennie Fischer ◽  
Maria Borowiak ◽  
Burkhard Malorny ◽  
Katharina Juraschek ◽  
...  

ABSTRACT In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a blaNDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this blaNDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae. Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.


2011 ◽  
Vol 56 (2) ◽  
pp. 783-786 ◽  
Author(s):  
Alessandra Carattoli ◽  
Laura Villa ◽  
Laurent Poirel ◽  
Rémy A. Bonnin ◽  
Patrice Nordmann

ABSTRACTTheblaNDM-1gene has been reported to be often located on broad-host-range plasmids of the IncA/C type in clinical but also environmental bacteria recovered from the New Delhi, India, area. IncA/C-type plasmids are the main vehicles for the spread of the cephalosporinase geneblaCMY-2, frequently identified in the United States, Canada, and Europe. In this study, we completed the sequence of IncA/C plasmid pNDM-KN carrying theblaNDM-1gene, recovered from aKlebsiella pneumoniaeisolate from Kenya. This sequence was compared with those of three IncA/C-type reference plasmids fromEscherichia coli,Yersinia ruckeri, andPhotobacterium damselae. Comparative analysis showed that theblaNDM-1gene was located on a widely diffused plasmid scaffold known to be responsible for the spread ofblaCMY-2-like genes and consequently for resistance to broad-spectrum cephalosporins. Considering that IncA/C plasmids possess a broad host range, this scaffold might support a large-scale diffusion of theblaNDM-1gene among Gram-negative rods.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Gabriele Arcari ◽  
Federica Maria Di Lella ◽  
Giulia Bibbolino ◽  
Fabio Mengoni ◽  
Marzia Beccaccioli ◽  
...  

ABSTRACT In this study, we investigated VIM-1-producing Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter freundii, and Enterobacter cloacae strains, isolated in 2019 during a period of active surveillance of carbapenem-resistant Enterobacterales in a large university hospital in Italy. VIM-1-producing strains colonized the gut of patients, with up to three different VIM-1-positive bacterial species isolated from a single rectal swab, but also caused bloodstream infection in one colonized patient. In the multispecies cluster, blaVIM-1 was identified in a 5-gene cassette class 1 integron, associated with several genetic determinants, including the blaSHV-12, qnrS1, and mph(A) genes, located on a highly conjugative and broad-host-range IncA plasmid. The characteristics and origin of this IncA plasmid were studied.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Vaughn S. Cooper ◽  
Erin Honsa ◽  
Hannah Rowe ◽  
Christopher Deitrick ◽  
Amy R. Iverson ◽  
...  

ABSTRACT Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo. Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms. IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.


2013 ◽  
Vol 81 (10) ◽  
pp. 3527-3533 ◽  
Author(s):  
Chong Wang ◽  
Yong-hua Hu ◽  
Bo-guang Sun ◽  
Jun Li ◽  
Li Sun

ABSTRACTEdwardsiella tardais a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenicE. tardastrain TX01. IvyEtpossesses the Ivy signature motif CKPHDC in the form of82CQPHNC87and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of theivyEtgene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt(rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared.In vitrostudies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme onE. tarda.In vivoanalysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEtis a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


2012 ◽  
Vol 56 (6) ◽  
pp. 3207-3215 ◽  
Author(s):  
Katrin Ingram ◽  
William Ellis ◽  
Jennifer Keiser

ABSTRACTInteresting antischistosomal properties have been documented for the antimalarial mefloquine, a 4-quinolinemethanol. We evaluated the antischistosomal activities of nine mefloquine-related compounds belonging to the 4-pyridinemethanols, 9-phenanthrenmethanols, and 4-quinolinemethanols. Eight compounds revealed high activities againstSchistosoma mansoni in vitro, with two drugs (the 4-quinolinemethanols WR7573 and WR7930) characterized by significantly lower half-maximal inhibitory concentrations (IC50s) (2.7 and 3.5 μM, respectively) compared to mefloquine (11.4 μM). Mefloquine and WR7930 showed significantly decreased IC50s when incubated in the presence of hemoglobin. High worm burden reductions (WBR) were obtained with enpiroline (WBR, 82.7%; dosage, 200 mg/kg of body weight) and itsthreoisomers (+)-threo(WBR, 100%) and (−)-threo(WBR, 89%) and with WR7930 (WBR, 87%; dosage, 100 mg/kg) against adultS. mansoniin mice. Furthermore, excellentin vitroandin vivoantischistosomal activity was observed for two WR7930-related structures (WR29252 and WR7524). In addition, mefloquine (WBR, 81%), enpiroline (WBR, 77%), and WR7930 (WBR, 100%) showed high activities againstS. haematobiumharbored in mice following single oral doses of 200 mg/kg. These results provide a deeper insight into the structural features of the arylmethanols that rule antischistosomal activity. Further studies should be launched with enpiroline and WR7930.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Irene Jiménez-Guerrero ◽  
Francisco Pérez-Montaño ◽  
Carlos Medina ◽  
Francisco Javier Ollero ◽  
Francisco Javier López-Baena

ABSTRACT The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis. IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected nodulation.


2006 ◽  
Vol 51 (2) ◽  
pp. 796-799 ◽  
Author(s):  
Ângela Novais ◽  
Rafael Cantón ◽  
Raquel Moreira ◽  
Luísa Peixe ◽  
Fernando Baquero ◽  
...  

ABSTRACT The spread of CTX-M-1-like enzymes in Spain is associated with particular plasmids of broad-host-range IncN (bla CTX-M-32, bla CTX-M-1), IncL/M (bla CTX-M-1), and IncA/C2 (bla CTX-M-3) or narrow-host-range IncFII (bla CTX-M-15). The identical genetic surroundings of bla CTX-M-32 and bla CTX-M-1 and their locations on related 40-kb IncN plasmids indicate the in vivo evolution of this element.


Sign in / Sign up

Export Citation Format

Share Document