The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.

1997 ◽  
Vol 63 (10) ◽  
pp. 3818-3824 ◽  
Author(s):  
J I Park ◽  
C M Grant ◽  
P V Attfield ◽  
I W Dawes
Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1349-1359 ◽  
Author(s):  
W-T Walter Lau ◽  
Ken R Schneider ◽  
Erin K O’Shea

Abstract In the yeast Saccharomyces cerevisiae, transcription of a secreted acid phosphatase, PHO5, is repressed in response to high concentrations of extracellular inorganic phosphate. To investigate the signal transduction pathway leading to transcriptional regulation of PHO5, we carried out a genetic selection for mutants that express PHO5 constitutively. We then screened for mutants whose phenotypes are also dependent on the function of PHO81, which encodes an inhibitor of the Pho80p-Pho85p cyclin/cyclin-dependent kinase complex. These mutations are therefore likely to impair upstream functions in the signaling pathway, and they define five complementation groups. Mutations were found in a gene encoding a plasma membrane ATPase (PMA1), in genes required for the in vivo function of the phosphate transport system (PHO84 and PHO86), in a gene involved in the fatty acid synthesis pathway (ACC1), and in a novel, nonessential gene (PHO23). These mutants can be classified into two groups: pho84, pho86, and pma1 are defective in high-affinity phosphate uptake, whereas acc1 and pho23 are not, indicating that the two groups of mutations cause constitutive expression of PHO5 by distinct mechanisms. Our observations suggest that these gene products affect different aspects of the signal transduction pathway for PHO5 repression.


2005 ◽  
Vol 33 (1) ◽  
pp. 247-252 ◽  
Author(s):  
M. Johnston ◽  
J.-H. Kim

Because glucose is the principal carbon and energy source for most cells, most organisms have evolved numerous and sophisticated mechanisms for sensing glucose and responding to it appropriately. This is especially apparent in the yeast Saccharomyces cerevisiae, where these regulatory mechanisms determine the distinctive fermentative metabolism of yeast, a lifestyle it shares with many kinds of tumour cells. Because energy generation by fermentation of glucose is inefficient, yeast cells must vigorously metabolize glucose. They do this, in part, by carefully regulating the first, rate-limiting step of glucose utilization: its transport. Yeast cells have learned how to sense the amount of glucose that is available and respond by expressing the most appropriate of its 17 glucose transporters. They do this through a signal transduction pathway that begins at the cell surface with the Snf3 and Rgt2 glucose sensors and ends in the nucleus with the Rgt1 transcription factor that regulates expression of genes encoding glucose transporters. We explain this glucose signal transduction pathway, and describe how it fits into a highly interconnected regulatory network of glucose sensing pathways that probably evolved to ensure rapid and sensitive response of the cell to changing levels of glucose.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


1990 ◽  
Vol 10 (7) ◽  
pp. 3824-3827
Author(s):  
M Chedid ◽  
S B Mizel

Expression of a highly specific protein inhibitor for cyclic AMP-dependent protein kinases in interleukin-1 (IL-1)-responsive cells blocked IL-1-induced gene transcription that was driven by the kappa immunoglobulin enhancer or the human immunodeficiency virus long terminal repeat. This inhibitor did not affect protein kinase C-mediated gene transcription, suggesting that cyclic AMP-dependent protein kinases are involved in the signal transduction pathway for IL-1 in a number of responsive cell types.


1992 ◽  
Vol 12 (5) ◽  
pp. 1977-1985 ◽  
Author(s):  
C Sadhu ◽  
D Hoekstra ◽  
M J McEachern ◽  
S I Reed ◽  
J B Hicks

We have isolated a gene, designated CAG1, from Candida albicans by using the G-protein alpha-subunit clone SCG1 of Saccharomyces cerevisiae as a probe. Amino acid sequence comparison revealed that CAG1 is more homologous to SCG1 than to any other G protein reported so far. Homology between CAG1 and SCG1 not only includes the conserved guanine nucleotide binding domains but also spans the normally variable regions which are thought to be involved in interaction with the components of the specific signal transduction pathway. Furthermore, CAG1 contains a central domain, previously found only in SCG1. cag1 null mutants of C. albicans created by gene disruption produced no readily detectable phenotype. The C. albicans CAG1 gene complemented both the growth and mating defects of S. cerevisiae scg1 null mutants when carried on either a low- or high-copy-number plasmid. In diploid C. albicans, the CAG1 transcript was readily detectable in mycelial and yeast cells of both the white and opaque forms. However, the CAG1-specific transcript in S. cerevisiae transformants containing the C. albicans CAG1 gene was observed only in haploid cells. This transcription pattern matches that of SCG1 in S. cerevisiae and is caused by a1-alpha 2 mediated repression in diploid cells. That is, CAG1 behaves as a haploid-specific gene in S. cerevisiae, subject to control by the a1-alpha 2 mating-type regulation pathway. We infer from these results that C. albicans may have a signal transduction system analogous to that controlling mating type in S. cerevisiae or possibly even a sexual pathway that has so far remained undetected.


Sign in / Sign up

Export Citation Format

Share Document