scholarly journals Clonal Populations of ThermotolerantEnterobacteriaceae in Recreational Water and Their Potential Interference with Fecal Escherichia coli Counts

2001 ◽  
Vol 67 (10) ◽  
pp. 4934-4938 ◽  
Author(s):  
Sandra L. McLellan ◽  
Annette D. Daniels ◽  
Alissa K. Salmore

ABSTRACT Bacterial strains were isolated from beach water samples using the original Environmental Protection Agency method for Escherichia coli enumeration and analyzed by pulsed-field gel electrophoresis (PFGE). Identical PFGE patterns were found for numerous isolates from 4 of the 9 days sampled, suggesting environmental replication. 16S rRNA gene sequencing, API 20E biochemical testing, and the absence of β-glucuronidase activity revealed that these clonal isolates were Klebsiella, Citrobacter, and Enterobacter spp. In contrast, 82% of the nonclonal isolates from water samples were confirmed to be E. coli, and 16% were identified as other fecal coliforms. These nonclonal isolates produced a diverse range of PFGE patterns similar to those of isolates obtained directly from untreated sewage and gull droppings. β-Glucuronidase activity was critical in distinguishingE. coli from other fecal coliforms, particularly for the clonal isolates. These findings demonstrate that E. coli is a better indicator of fecal pollution than fecal coliforms, which may replicate in the environment and falsely elevate indicator organism levels.

1991 ◽  
Vol 37 (12) ◽  
pp. 908-911 ◽  
Author(s):  
Lois C. Shadix ◽  
Eugene W. Rice

The new United States Drinking Water Regulations state that water systems must analyze for Escherichia coli or fecal coliforms on any routine or repeat sample that is positive for total coliforms. The proposed methods for the detection of E. coli are based on β-glucuronidase activity, using the fluorogenic substrate 4-methylumbelliferyl β-D-glucuronide (MUG). This study was conducted to determine whether β-glucuronidase negative E. coli were present in significant numbers in environmental waters. Two hundred and forty E. coli cultures were isolated from 12 water samples collected from different environmental sources. β-glucuronidase activity was determined using lauryl tryptose broth with MUG, EC broth with MUG, and the Autoanalysis Colilert (AC) procedure. The isolates were also evaluated by the standard EC broth gas fermentation method for fecal coliforms. The results confirm that assaying for the enzyme β-glucuronidase utilizing the MUG substrate is an accurate method for the detection of E. coli in environmental waters. Key words: Escherichia coli, β-glucuronidase, 4-methylumbelliferyl β-D-glucuronide, water.


2007 ◽  
Vol 53 (6) ◽  
pp. 798-801 ◽  
Author(s):  
Tamara Garcia-Armisen ◽  
Josué Prats ◽  
Pierre Servais

Fecal coliforms (FC) counts were compared with Escherichia coli counts in differently contaminated freshwater samples (n = 166). FC were enumerated by plate count on triphenyl 2,3,5-tetrazolium chloride Tergitol medium. Escherichia coli were enumerated by the most probable number microplate method based on the detection of glucuronidase activity. FC and E. coli counts were highly correlated; an average E. coli/FC ratio equal to 0.77 was found, meaning that on average, 77% of FC were E. coli. Knowing the E. coli/FC ratio allows us to convert the historical microbiological quality data expressed in FC counts into E. coli abundance and thus to compare with present and future monitoring data that are (or will be) based on E. coli enumeration.


2013 ◽  
Vol 59 (3) ◽  
pp. 175-182 ◽  
Author(s):  
Ganyu Gu ◽  
Zhiyao Luo ◽  
Juan M. Cevallos-Cevallos ◽  
Paige Adams ◽  
George Vellidis ◽  
...  

Outbreaks of enteritis caused by Escherichia coli O157 associated with fresh produce have resulted in questions about the safety of irrigation water; however, associated risks have not been systematically evaluated. In this study, the occurrence and distribution of the human pathogen E. coli O157 from vegetable irrigation ponds within the Suwannee River Watershed in Georgia were investigated, and the relationship to environmental factors was analyzed. Surface and subsurface water samples were collected monthly from 10 vegetable irrigation ponds from March 2011 to February 2012. Escherichia coli O157 was isolated from enriched filtrates on CHROMagar and sorbitol MacConkey agar media and confirmed by an agglutination test. Presence of virulence genes stx1, stx2 , and eae was tested by polymerase chain reaction. In addition, 27 environmental variables of the sampled ponds were measured. Denaturing gradient gel electrophoresis was conducted for the analysis of bacterial communities in the water samples. Biserial correlation coefficients were calculated to evaluate the log10 colony-forming unit per millilitre correlations between the environmental factors and the occurrence of E. coli O157. Stepwise and canonical discriminant analyses were used to determine the factors that were associated with the presence and absence of E. coli O157 in water samples. All 10 ponds were positive for E. coli O157 some of the time, mainly in summer and fall of 2011. The temporal distribution of this bacterium differed among the 10 ponds. Temperature, rainfall, populations of fecal coliform, and culturable bacteria were positively correlated with the occurrence of E. coli O157 (P < 0.05), while the total nitrogen concentration, oxidation–reduction potential, and dissolved oxygen concentration were negatively correlated with the occurrence of this pathogen (P < 0.05). Temperature and rainfall were the most important factors contributing to the discrimination between samples with and without E. coli O157, followed by bacterial diversity and culturable bacteria population density. Bacterial numbers and diversity, including fecal coliforms and E. coli O157, increased after rainfall (and possibly runoff from pond margins) in periods with relatively high temperatures, suggesting that prevention of runoff may be important to minimize the risk of enteric pathogens in irrigation ponds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. McKee ◽  
Paul M. Bradley ◽  
David Shelley ◽  
Shea McCarthy ◽  
Marirosa Molina

AbstractRecreational waters are primary attractions at many national and state parks where feral swine populations are established, and thus are possible hotspots for visitor exposure to feral swine contaminants. Microbial source tracking (MST) was used to determine spatial and temporal patterns of fecal contamination in Congaree National Park (CONG) in South Carolina, U.S.A., which has an established population of feral swine and is a popular destination for water-based recreation. Water samples were collected between December 2017 and June 2019 from 18 surface water sites distributed throughout CONG. Host specific MST markers included human (HF183), swine (Pig2Bac), ruminant (Rum2Bac), cow (CowM3), chicken (CL), and a marker for shiga toxin producing Escherichia coli (STEC; stx2). Water samples were also screened for culturable Escherichia coli (E. coli) as part of a citizen science program. Neither the cow nor chicken MST markers were detected during the study. The human marker was predominantly detected at boundary sites or could be attributed to upstream sources. However, several detections within CONG without concurrent detections at upstream external sites suggested occasional internal contamination from humans. The swine marker was the most frequently detected of all MST markers, and was present at sites located both internal and external to the Park. Swine MST marker concentrations ≥ 43 gene copies/mL were associated with culturable E. coli concentrations greater than the U.S. Environmental Protection Agency beach action value for recreational waters. None of the MST markers showed a strong association with detection of the pathogenic marker (stx2). Limited information about the health risk from exposure to fecal contamination from non-human sources hampers interpretation of the human health implications.


2004 ◽  
Vol 4 (2) ◽  
pp. 39-45 ◽  
Author(s):  
M.-L. Hänninen ◽  
R. Kärenlampi

The sources for drinking water in Finland are surface water, groundwater or artificially recharged groundwater. There are approximately 1400 groundwater plants in Finland that are microbiologically at a high risk level because in most cases they do not use any disinfection treatment. Campylobacter jejuni has caused waterborne epidemics in several countries. Since the middle of the 1980s, C. jejuni has been identified as the causative agent in several waterborne outbreaks in Finland. Between 1998 and 2001, C. jejuni or C. upsaliensis caused seven reported waterborne epidemics. In these epidemics approximately 4000 people acquired the illness. Most of the outbreaks occurred in July, August , September or October. In four of them source water and net water samples were analysed for total coliforms or fecal coliforms, E. coli and campylobacters. We showed that large volumes of water samples in studies of indicator organisms (up to 5000 ml) and campylobacters (4000–20,000 ml) increased the possibility to identify faecal contamination and to detect the causative agent from suspected sources.


1993 ◽  
Vol 27 (3-4) ◽  
pp. 267-270 ◽  
Author(s):  
M. T. Augoustinos ◽  
N. A. Grabow ◽  
B. Genthe ◽  
R. Kfir

A fluorogenic β-glucuronidase assay comprising membrane filtration followed by selective enumeration on m-FC agar at 44.5°C and further confirmation using tlie 4-metliylumbelliferyl-β-D-glucuronide (MUG) containing medium was evaluated for the detection of Escherichia coli in water. A total of 200 typical blue and non-typical blue colonies were isolated from sea and fresh water samples using initial selective enumeration on m-FC agar. Pure cultures of the selected colonies were further tested using the MUG assay and identified using the API 20E method. Of the colonies tested which were shown to be positive using the MUG assay 99.4% were Escherichia coli. The results of this study indicate the combination of the m-FC method followed by the MUG assay to be highly efficient for the selection and confirmation of E. coli from a wide range of environmental waters.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moe Kyotani ◽  
Tsuneaki Kenzaka ◽  
Hozuka Akita ◽  
Soichi Arakawa

Abstract Background The bacterium Campylobacter insulaenigrae was first isolated from marine mammals of Scotland in 2004. Only one case of C. insulaenigrae infection in humans has been previously reported. Case presentation An 89-year-old Japanese man without dementia was admitted to our hospital, because he presented with a fever of 38 °C and weakness in right leg since 5 days. He had organized chronic subdural hematoma (CSH), and no history of pre-infection. At the time of admission, he had paralysis of the extraocular muscle, ataxia, and low manual muscle test score of the right side. He was suspected to have Miller Fisher syndrome; however, these symptoms improved without any treatment. On day 22 in the hospital, the patient presented a fever of 38.8 °C, left cranial nerve disorder, and hemiplegia. On day 25, the patient presented with signs of meningeal irritation; cerebrospinal fluid examination indicated an increase in the number of apocytes and a low glucose level. A contrast magnetic resonance imaging (MRI) scan of the patient’s head indicated a contrast enhancement effect in his right meninges. The blood culture showed presence of spirillums; 16S rRNA gene sequencing confirmed that the spirillums in the blood culture were Campylobacter insulaenigrae (C. insulaenigrae). We started treatment with meropenem for bacteremia and meningitis. When the symptoms improved, meropenem was replaced with ampicillin, based on the result of the drug sensitivity test. The treatment continued for 4 weeks. Conclusions We report the first case of meningitis caused by C. insulaenigrae bacteremia in humans, and the second clinical report of C. insulaenigrae infection in humans. The bacterial strains isolated from humans and marine mammals had different genotypes. This suggests that different genotypes could be responsible for differences in the hosts. Further case studies are needed to establish the reasons behind the difference in the manifestations of C. insulaenigrae infections reported so far.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Naima Lemjiber ◽  
Khalid Naamani ◽  
Annabelle Merieau ◽  
Abdelhi Dihazi ◽  
Nawal Zhar ◽  
...  

Bacterial burn is one of the major diseases affecting pear trees worldwide, with serious impacts on producers and economy. In Morocco, several pear trees (Pyrus communis) have shown leaf burns since 2015. To characterize the causal agent of this disease, we isolated fourteen bacterial strains from different parts of symptomatic pear trees (leaves, shoots, fruits and flowers) that were tested in planta for their pathogenicity on Louise bonne and Williams cultivars. The results showed necrotic lesions with a significant severity range from 47.63 to 57.77% on leaves of the Louise bonne cultivar inoculated with isolate B10, while the other bacterial isolates did not induce any disease symptom. 16S rRNA gene sequencing did not allow robust taxonomic discrimination of the incriminated isolate. Thus, we conducted whole-genome sequencing (WGS) and phylogenetic analyzes based on gyrA, gyrB and cdaA gene sequences, indicating that this isolate belongs to the Bacillus altitudinis species. This taxonomic classification was further confirmed by the Average Nucleotide Identity (ANI) and the in silico DNA-DNA hybridization (isDDH) analyzes compared to sixty-five Bacillus spp. type strains. The genome was mined for genes encoding carbohydrate-active enzymes (CAZymes) known to play a role in the vegetal tissue degradation. 177 candidates with functions that may support the in planta phytopathogenicity results were identified. To the best of our knowledge, this is the first data reporting B. altitudinis as agent of leaf burn in P. communis in Morocco. Our dataset will improve our knowledge on spread and pathogenicity of B. altitudinis genotypes that appears as emergent phytopathogenic agent, unveiling virulence factors and their genomic location (i.e., within genomic islands or the accessory genome) to induce trees disease.


2002 ◽  
Vol 68 (4) ◽  
pp. 1631-1638 ◽  
Author(s):  
A. Leclercq ◽  
C. Wanegue ◽  
P. Baylac

ABSTRACT A 24-h direct plating method for fecal coliform enumeration with a resuscitation step (preincubation for 2 h at 37 ± 1°C and transfer to 44 ± 1°C for 22 h) using fecal coliform agar (FCA) was compared with the 24-h standardized violet red bile lactose agar (VRBL) method. FCA and VRBL have equivalent specificities and sensitivities, except for lactose-positive non-fecal coliforms such as Hafnia alvei, which could form typical colonies on FCA and VRBL. Recovery of cold-stressed Escherichia coli in mashed potatoes on FCA was about 1 log unit lower than that with VRBL. When the FCA method was compared with standard VRBL for enumeration of fecal coliforms, based on counting carried out on 170 different food samples, results were not significantly different (P > 0.05). Based on 203 typical identified colonies selected as found on VRBL and FCA, the latter medium appears to allow the enumeration of more true fecal coliforms and has higher performance in certain ways (specificity, sensitivity, and negative and positive predictive values) than VRBL. Most colonies clearly identified on both media were E. coli and H. alvei, a non-fecal coliform. Therefore, the replacement of fecal coliform enumeration by E. coli enumeration to estimate food sanitary quality should be recommended.


2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


Sign in / Sign up

Export Citation Format

Share Document