scholarly journals Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Infrared Spectroscopy and Machine Learning

2002 ◽  
Vol 68 (6) ◽  
pp. 2822-2828 ◽  
Author(s):  
David I. Ellis ◽  
David Broadhurst ◽  
Douglas B. Kell ◽  
Jem J. Rowland ◽  
Royston Goodacre

ABSTRACT Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable “fingerprints.” Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 107 bacteria·g−1 the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

2020 ◽  
Vol 46 (4) ◽  
pp. 276-286
Author(s):  
Anna Conrad ◽  
Caterina Villari ◽  
Patrick Sherwood ◽  
Pierluigi (Enrico) Bonello

Austrian pine (Pinus nigra) is a valuable component of the urban landscape in the Midwestern USA. In this area, it is impacted by the fungal pathogen Diplodia sapinea, which causes a tip blight and canker on infected trees. While the disease can be managed through the application of fungicides and/or by preventing environmental conditions that are favorable for the pathogen, these practices only temporarily alleviate the problem. A more sustainable solution is to use resistant trees. The objective of this study was to evaluate whether Fourier-transform infrared (FT-IR) spectroscopy combined with chemometric analysis can distinguish between trees that vary in susceptibility to D. sapinea. Trees were phenotyped for resistance to D. sapinea by artificially inoculating shoots and measuring ensuing lesions seven days following inoculation. Then, three different chemometric approaches, including a type of machine learning called support vector machine (SVM), were used to evaluate whether or not trees that varied in susceptibility could be distinguished. Trees that varied in susceptibility could be discriminated based on FT-IR spectra collected prior to pathogen infection using the three chemometric approaches: soft independent modeling of class analogy, partial least squares regression, and SVM. While further validation of the predictive models is needed, the results suggest that the approach may be useful as a tool for screening and breeding Austrian pine for resistance to D. sapinea. Furthermore, this approach may have wide applicability in other tree/plant pathosystems of concern and economic value to the nursery and ornamental industries.


1987 ◽  
Vol 41 (7) ◽  
pp. 1156-1159 ◽  
Author(s):  
W. Charles Story ◽  
Tsutomu Masujima ◽  
Jim Liang ◽  
Guangyue Liu ◽  
Edward M. Eyring ◽  
...  

It has been reported that the use of an infrared transparent polarizable gas such as xenon enhances the FT-IR photoacoustic signal of some species adsorbed on a sample surface. Diffuse reflectance and photoacoustic FT-IR methods were used to obtain spectra of silica surfaces under helium, nitrogen, and xenon. Absence of the reported effect with both techniques is shown, and a tentative explanation for these results is given.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Rahul Joshi ◽  
Ramaraj Sathasivam ◽  
Sang Un Park ◽  
Hongseok Lee ◽  
Moon S. Kim ◽  
...  

This study performed non-destructive measurements of phenolic compounds in moringa powder using Fourier Transform Infrared (FT-IR) spectroscopy within a spectral range of 3500–700 cm−1. Three major phenolic compounds, namely, kaempferol, benzoic acid, and rutin, were measured in five different varieties of moringa powder, which was approved with respect to the high-performance liquid chromatography (HPLC) method. The prediction performance of three different regression methods, i.e., partial least squares regression (PLSR), principal component regression (PCR), and net analyte signal (NAS)-based methodology, called hybrid linear analysis (HLA/GO), were compared to achieve the best prediction model. The obtained results for the PLS regression method resulted in better performance for the prediction analysis of phenolic compounds in moringa powder. The PLSR model attained a correlation coefficient () value of 0.997 and root mean square error of prediction (RMSEP) of 0.035 mg/g, respectively, which is comparatively higher than the other two regression models. Based on the results, it can be concluded that FT-IR spectroscopy in conjugation with a suitable regression analysis method could be an effective analytical tool for the non-destructive prediction of phenolic compounds in moringa powder.


2016 ◽  
Vol 71 (5) ◽  
pp. 839-846 ◽  
Author(s):  
Zhenyu Lu ◽  
Stephanie A. DeJong ◽  
Brianna M. Cassidy ◽  
Raymond G. Belliveau ◽  
Michael L. Myrick ◽  
...  

Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


2016 ◽  
Vol 70 (5) ◽  
pp. 897-904 ◽  
Author(s):  
Mazen Erfan ◽  
Yasser M Sabry ◽  
Mohammad Sakr ◽  
Bassem Mortada ◽  
Mostafa Medhat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document