scholarly journals Predictive Thermal Inactivation Model for Effects of Temperature, Sodium Lactate, NaCl, and Sodium Pyrophosphate on Salmonella Serotypes in Ground Beef

2003 ◽  
Vol 69 (9) ◽  
pp. 5138-5156 ◽  
Author(s):  
Vijay K. Juneja ◽  
Harry M. Marks ◽  
Tim Mohr

ABSTRACT Analyses of survival data of a mixture of Salmonella spp. at fixed temperatures between 55°C (131°F) and 71.1°C (160°F) in ground beef matrices containing concentrations of salt between 0 and 4.5%, concentrations of sodium pyrophosphate (SPP) between 0 and 0.5%, and concentrations of sodium lactate (NaL) between 0 and 4.5% indicated that heat resistance of Salmonella increases with increasing levels of SPP and salt, except that, for salt, for larger lethalities close to 6.5, the effect of salt was evident only at low temperatures (<64°C). NaL did not seem to affect the heat resistance of Salmonella as much as the effects induced by the other variables studied. An omnibus model for predicting the lethality for given times and temperatures for ground beef matrices within the range studied was developed that reflects the convex survival curves that were observed. However, the standard errors of the predicted lethalities from this models are large, so consequently, a model, specific for predicting the times needed to obtained a lethality of 6.5 log10, was developed, using estimated results of times derived from the individual survival curves. For the latter model, the coefficient of variation (CV) of predicted times range from about 6 to 25%. For example, at 60°C, when increasing the concentration of salt from 0 to 4.5%, and assuming that the concentration of SPP is 0%, the time to reach a 6.5-log10 relative reduction is predicted to increase from 20 min (CV = 11%) to 48 min (CV = 15%), a 2.4 factor (CV = 19%). At 71.1°C (160°F) the model predicts that more than 0.5 min is needed to achieve a 6.5-log10 relative reduction.

2007 ◽  
Vol 70 (4) ◽  
pp. 851-859 ◽  
Author(s):  
HYUN-JUNG CHUNG ◽  
SHAOJIN WANG ◽  
JUMING TANG

The purpose of this study was to investigate the influence of heat transfer on measured thermal inactivation kinetic parameters of bacteria in solid foods when using tube methods. The bacterial strain selected for this study, Escherichia coli K-12, had demonstrated typical first-order inactivation characteristics under isothermal test conditions. Three tubes of different sizes (3, 13, and 20 mm outer diameter) were used in the heat treatments at 57, 60, and 63°C with mashed potato as the test food. A computer model was developed to evaluate the effect of transit heat transfer behavior on microbial inactivation in the test tubes. The results confirmed that the survival curves of E. coli K-12 obtained in 3-mm capillary tubes were log linear at the three tested temperatures. The survival curves observed under nonisothermal conditions in larger tubes were no longer log linear. Slow heat transfer alone could only partially account for the large departures from log-linear behavior. Tests with the same bacterial strain after 5 min of preconditioning at a sublethal temperature of 45°C revealed significantly enhanced heat resistance. Confirmative tests revealed that the increased heat resistance of the test bacterium in the center of the large tubes during the warming-up periods resulted in significantly larger D-values than those obtained with capillary tube methods.


2008 ◽  
Vol 71 (3) ◽  
pp. 509-515 ◽  
Author(s):  
J. D. STOPFORTH ◽  
R. SUHALIM ◽  
B. KOTTAPALLI ◽  
W. E. HILL ◽  
M. SAMADPOUR

There has been speculation that multidrug-resistant (MDR) strains are generated by subtherapeutic antibiotic use in food animals and that such strains result in increased resistance to lethality by food processes such as heat and irradiation. The objective of this study was to evaluate the heat resistance of 20 strains, namely an MDR and a non–multidrug-resistant (NMDR) strain of each of 10 Salmonella serotypes isolated from cattle or cattle environments. MDR and NMDR Salmonella serotypes studied included Montevideo, Typhimurium, Anatum, Muenster, Newport, Mbandaka, Dublin, Reading, Agona, and Give. For phase I, stationary-phase cultures of the strains were aliquoted into sterile capillary tubes and immersed in a temperature-controlled water bath at 55, 60, 65, and 70°C for appropriate times. Survivor curves were plotted for each temperature, and a best-fit linear regression was derived for each temperature. D-values (decimal reduction times) and z-values (changes in temperature required to change the D-values) were calculated for each strain. Although there was no overall significant difference in the heat resistance of MDR and NMDR serotypes, NMDR serotypes generally appeared to have slightly higher heat resistance than NMDR serotypes, especially at 55 and 60°C. The highest relative heat resistance (highest z-values) was exhibited by Salmonella Anatum. Notably, the relative heat resistance of NMDR Salmonella Agona was similar to that of NMDR Salmonella Anatum and had the highest D-values at all four temperatures. For phase II, three serotypes (regardless of resistance profile) with the highest relative heat resistance and their drug-resistant counterparts were selected for thermal inactivation in ground beef patties cooked to endpoint temperatures. Salmonella Agona was able to survive in ground beef cooked to an internal temperature of 71°C. Results of these studies suggest drug resistance does not affect the heat resistance of Salmonella and that serotype or strain is an important consideration in risk assessment of the pathogen with regard to survival at cooking temperatures.


2011 ◽  
Vol 74 (4) ◽  
pp. 622-626 ◽  
Author(s):  
CHENG-AN HWANG ◽  
VIJAY JUNEJA

Ground beef products are susceptible to contamination with Escherichia coli O157:H7. The objective of this study was to examine the effect of salt, sodium pyrophosphate (SPP), and sodium lactate on the probability of growth of E. coli O157:H7 in ground beef under a temperature abuse condition. Ground beef containing 0 to 2.25% salt, 0 to 0.5% SPP, and 0 to 3% lactate was inoculated with a four-strain mixture of E. coli O157:H7, vacuum packaged, and stored at 10°C for 15 days. A total of 25 combinations of the three additives, each with 20 samples, were tested. A logistic regression was used to model the probability of growth of E. coli O157:H7 (with a 1.0-log CFU/g increase during storage) as a function of salt, SPP, and lactate. The resultant probability model indicated that lactate at higher concentrations decreased the probability of growth of E. coli O157:H7 in ground beef, and the effect was more pronounced at higher salt concentrations. At salt concentrations below 1.3%, the increase of SPP concentration marginally increased the growth probabilities of E. coli O157:H7. The model illustrated the effect of salt, SPP, and lactate on the growth probabilities and growth or no-growth behavior of E. coli O157:H7 in ground beef and can be used to improve the microbial food safety of ground beef products.


2003 ◽  
Vol 66 (4) ◽  
pp. 664-667 ◽  
Author(s):  
LIHAN HUANG ◽  
VIJAY K. JUNEJA

A study was conducted to investigate the antimicrobial effect of sodium lactate (NaL) (0, 1.5, 3.0, and 4.5%) on the survival of Escherichia coli O157:H7 in 93% lean ground beef. Samples inoculated with a mixture of four strains of E. coli O157:H7 (107 to 108 CFU/g) were subjected to immersion heating in a water bath stabilized at 55, 57.5, 60, 62.5, or 65°C. Results of statistical analysis indicated that the heating temperature was the only factor affecting the decimal reduction times (D-values) of E. coli O157:H7 in 93% lean ground beef. The change in temperature required to change the D-value (the z-value) was determined as 7.6°C. The thermal resistance of this organism was neither affected by the addition of NaL nor by the interactions between NaL and temperature. Adding NaL to ground beef to reduce the thermal resistance of E. coli O157: H7 is therefore not recommended.


2018 ◽  
Vol 81 (6) ◽  
pp. 986-992 ◽  
Author(s):  
JAGPINDER S. BRAR ◽  
JOLENA N. WADDELL ◽  
MATTHEW BAILEY ◽  
SYDNEY CORKRAN ◽  
CARMEN VELASQUEZ ◽  
...  

ABSTRACT Decimal reduction time (D-value) was calculated for six non-O157 Shiga toxin–producing Escherichia coli (STEC) in a laboratory medium and ground beef. For the laboratory medium, an overnight culture of each strain of STEC was divided into 10-mL sample bags and heated in a water bath for a specific time on the basis of the temperatures. Survival curves were generated by plotting the surviving bacterial population against time, and a linear-log primary model was used to estimate the D-values from survival curves. The z-values (the temperature raised to reduce the D-value by one-tenth) were calculated by plotting the log D-values against temperature. Similarly, for ground beef, six fat contents, 5, 10, 15, 20, 25, and 30% of ground beef were formulated for this study. Inoculated meat was divided into 5-g pouches and submerged in a water bath set at specific temperatures (55, 60, 65, 68, and 71.1°C). The average D-value for these strains in a laboratory medium was 17.96 min at 55°C, which reduced significantly (P &lt; 0.05) to 1.58 min at 60°C, and then further reduced (P &lt; 0.05) to 0.46 min at 65°C. In ground beef, a negative correlation (P &lt; 0.05) between fat content of ground beef and D-values was observed at 55°C. However, at temperatures greater than 60°C, there was no impact (P &gt; 0.05) of fat content of ground beef on the thermal resistance of non-O157 STECs. Irrespective of the fat content of ground beef, the D-values ranged from 15.93 to 11.69, 1.15 to 1.12, and 0.14 to 0.09 min and 0.05 at 55, 60, 65, and 68°C, respectively. The data generated from this study can be helpful for the meat industry to develop predictive models for thermal inactivation of non-O157 STECs in ground beef with varying fat content.


2003 ◽  
Vol 69 (7) ◽  
pp. 4123-4128 ◽  
Author(s):  
R. T. Bacon ◽  
J. R. Ransom ◽  
J. N. Sofos ◽  
P. A. Kendall ◽  
K. E. Belk ◽  
...  

ABSTRACT The heat resistance of susceptible and multiantimicrobial-resistant Salmonella strains grown to stationary phase in glucose-free tryptic soy broth supplemented with 0.6% yeast extract (TSBYE−G; nonadapted), in regular (0.25% glucose) TSBYE, or in TSBYE−G with 1.00% added glucose (TSBYE+G; acid adapted) was determined at 55, 57, 59, and 61°C. Cultures were heated in sterile 0.1% buffered peptone water (50 μl) in heat-sealed capillary tubes immersed in a thermostatically controlled circulating-water bath. Decimal reduction times (D values) were calculated from survival curves having r 2 values of >0.90 as a means of comparing thermal tolerance among variables. D 59°C values increased (P < 0.05) from 0.50 to 0.58 to 0.66 min for TSBYE−G, TSBYE, and TSBYE+G cultures, respectively. D 61°C values of antimicrobial-susceptible Salmonella strains increased (P < 0.05) from 0.14 to 0.19 as the glucose concentration increased from 0.00 to 1.00%, respectively, while D 61°C values of multiantimicrobial-resistant Salmonella strains did not differ (P > 0.05) between TSBYE−G and TSBYE+G cultures. When averaged across glucose levels and temperatures, there were no differences (P > 0.05) between the D values of susceptible and multiantimicrobial-resistant inocula. Collectively, D values ranged from 4.23 to 5.39, 1.47 to 1.81, 0.50 to 0.66, and 0.16 to 0.20 min for Salmonella strains inactivated at 55, 57, 59, and 61°C, respectively. zD values were 1.20, 1.48, and 1.49°C for Salmonella strains grown in TSBYE+G, TSBYE, and TSBYE−G, respectively, while the corresponding activation energies of inactivation were 497, 493, and 494 kJ/mol. Study results suggested a cross-protective effect of acid adaptation on thermal inactivation but no association between antimicrobial susceptibility and the ability of salmonellae to survive heat stress.


2014 ◽  
Vol 77 (10) ◽  
pp. 1696-1702 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
JIMENA GARCIA-DÁVILA ◽  
JULIO CESAR LOPEZ-ROMERO ◽  
ETNA AIDA PENA-RAMOS ◽  
JUAN PEDRO CAMOU ◽  
...  

The interactive effects of heating temperature (55 to 65°C), sodium chloride (NaCl; 0 to 2%), and green tea 60% polyphenol extract (GTPE; 0 to 3%) on the heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags that were submerged in a circulating water bath set at 55, 57, 60, 63, and 65°C. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values were analyzed by second-order response surface regression for temperature, NaCl, and GTPE. The data indicated that all three factors interacted to affect the inactivation of the pathogen. The D-values for turkey with no NaCl or GTPE at 55, 57, 60, 63, and 65°C were 36.3, 20.8, 13.2, 4.1, and 2.9 min, respectively. Although NaCl exhibited a concentration-dependent protective effect against heat lethality on L. monocytogenes in turkey, addition of GTPE rendered the pathogen more sensitive to the lethal effect of heat. GTPE levels up to 1.5% interacted with NaCl and reduced the protective effect of NaCl on heat resistance of the pathogen. Food processors can use the predictive model to design an appropriate heat treatment that would inactivate L. monocytogenes in cooked turkey products without adversely affecting the quality of the product.


Sign in / Sign up

Export Citation Format

Share Document