scholarly journals Improved Production of Heterologous Proteins by a Glucose Repression-Defective Mutant of Kluyveromyces lactis

2004 ◽  
Vol 70 (5) ◽  
pp. 2632-2638 ◽  
Author(s):  
Claudia Donnini ◽  
Francesca Farina ◽  
Barbara Neglia ◽  
Maria Concetta Compagno ◽  
Daniela Uccelletti ◽  
...  

ABSTRACT The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1β compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.

1993 ◽  
Vol 13 (12) ◽  
pp. 7566-7576
Author(s):  
F T Zenke ◽  
W Zachariae ◽  
A Lunkes ◽  
K D Breunig

We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulation by Gal80. Gal80 in turn not only controls Lac9 activity but also has a moderate influence on its rate of synthesis. Thus, a feedback control mechanism exists between the positive and negative regulators. By mutating the Lac9 binding sites of the GAL80 promoter, we could show that induction of GAL80 is required to prevent activation of the lactose/galactose regulon in glycerol or glucose plus galactose, whereas the noninduced level of Gal80 is sufficient to completely block Lac9 function in glucose.


2008 ◽  
Vol 74 (23) ◽  
pp. 7130-7137 ◽  
Author(s):  
S. Raimondi ◽  
E. Zanni ◽  
C. Talora ◽  
M. Rossi ◽  
C. Palleschi ◽  
...  

ABSTRACT Bottlenecks in protein expression and secretion often limit the development of industrial processes. By manipulating chaperone and foldase levels, improvements in yeast secretion were found for a number of proteins. Recently, sustained endoplasmic reticulum stress, occurring due to recombinant protein production, was reported to cause oxidative stress in yeast. Saccharomyces cerevisiae cells are able to trigger an adaptive response to oxidative-stress conditions, resulting in the upregulation of both primary and secondary antioxidant defenses. SOD1 encodes for a superoxide dismutase that catalyzes the dismutation of superoxide anions (O2 −) into oxygen and hydrogen peroxide. It is a Cu2+/Zn2+ metalloenzyme and represents an important antioxidant defense in nearly all aerobic and aerotolerant organisms. We found that overexpression of the Kluyveromyces lactis SOD1 (KlSOD1) gene was able to increase the production of two different heterologous proteins, human serum albumin (HSA) and glucoamylase from Arxula adeninivorans. In addition, KlSOD1 overexpression led to a significant decrease in the amount of reactive oxygen species (ROS) that originated during protein production. The yield of HSA also increased when K. lactis cells were grown in the presence of the antioxidant agent ascorbic acid and decreased when cells were challenged with menadione, a ROS generator compound. Moreover, we observed that, in high-osmolarity medium, cells overexpressing KlSOD1 showed higher growth rates than control cells. Our results thus further support the notion that the production of some heterologous proteins may be improved by manipulating genes involved in general stress responses.


1993 ◽  
Vol 13 (12) ◽  
pp. 7566-7576 ◽  
Author(s):  
F T Zenke ◽  
W Zachariae ◽  
A Lunkes ◽  
K D Breunig

We cloned the GAL80 gene encoding the negative regulator of the transcriptional activator Gal4 (Lac9) from the yeast Kluyveromyces lactis. The deduced amino acid sequence of K. lactis GAL80 revealed a strong structural conservation between K. lactis Gal80 and the homologous Saccharomyces cerevisiae protein, with an overall identity of 60% and two conserved blocks with over 80% identical residues. K. lactis gal80 disruption mutants show constitutive expression of the lactose/galactose metabolic genes, confirming that K. lactis Gal80 functions in essentially in the same way as does S. cerevisiae Gal80, blocking activation by the transcriptional activator Lac9 (K. lactis Gal4) in the absence of an inducing sugar. However, in contrast to S. cerevisiae, in which Gal4-dependent activation is strongly inhibited by glucose even in a gal80 mutant, glucose repressibility is almost completely lost in gal80 mutants of K. lactis. Indirect evidence suggests that this difference in phenotype is due to a higher activator concentration in K. lactis which is able to overcome glucose repression. Expression of the K. lactis GAL80 gene is controlled by Lac9. Two high-affinity binding sites in the GAL80 promoter mediate a 70-fold induction by galactose and hence negative autoregulation by Gal80. Gal80 in turn not only controls Lac9 activity but also has a moderate influence on its rate of synthesis. Thus, a feedback control mechanism exists between the positive and negative regulators. By mutating the Lac9 binding sites of the GAL80 promoter, we could show that induction of GAL80 is required to prevent activation of the lactose/galactose regulon in glycerol or glucose plus galactose, whereas the noninduced level of Gal80 is sufficient to completely block Lac9 function in glucose.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 263-273 ◽  
Author(s):  
Young-Mi Lim ◽  
Leo Tsuda ◽  
Yoshihiro H Inoue ◽  
Kenji Irie ◽  
Takashi Adachi-Yamada ◽  
...  

Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors.


1997 ◽  
Vol 249 (1) ◽  
pp. 248-257 ◽  
Author(s):  
Jorg Weirich ◽  
Paola Goffrini ◽  
Petra Kuger ◽  
Iliana Ferrero ◽  
Karin D. Breunig

1992 ◽  
Vol 12 (7) ◽  
pp. 2941-2948
Author(s):  
A Lombardo ◽  
G P Cereghino ◽  
I E Scheffler

We have examined the expression of the gene encoding the iron-protein subunit (Ip) of succinate dehydrogenase in Saccharomyces cerevisiae. The gene had been cloned by us and shown to be subject to glucose regulation (A. Lombardo, K. Carine, and I. E. Scheffler, J. Biol. Chem. 265:10419-10423, 1990). We discovered that a significant part of the regulation of the Ip mRNA levels by glucose involves the regulation of the turnover rate of this mRNA. In the presence of glucose, the half-life appears to be less than 5 min, while in glycerol medium, the half-life is greater than 60 min. The gene is also regulated transcriptionally by glucose. The upstream promoter sequence appeared to have four regulatory elements with consensus sequences shown to be responsible for the interaction with the HAP2/3/4 regulatory complex. A deletion analysis has shown that the two distal elements are redundant. These measurements were carried out by Northern (RNA) analyses of Ip mRNA transcripts as well as by assays of beta-galactosidase activity in cells carrying constructs of the Ip promoter linked to the lacZ coding sequence. These observations on the regulation of mRNA stability were also extended to the mRNA of the flavoprotein subunit of succinate dehydrogenase and in some experiments of iso-1-cytochrome c.


1993 ◽  
Vol 13 (5) ◽  
pp. 3058-3066
Author(s):  
W Zachariae ◽  
K D Breunig

The concentration of the transcriptional activator LAC9 (KlGAL4) of Kluyveromyces lactis is moderately regulated by the carbon source as is the case for GAL4, its homolog in Saccharomyces cerevisiae. Expression of the LAC9 gene is induced about twofold in galactose. This induction is due to autoregulation. The LAC9 gene product binds to a low-affinity binding site in the LAC9 promoter and moderately activates transcription in response to galactose above a basal level. As for the LAC9-controlled metabolic genes, induction of LAC9 is inhibited in the presence of glucose. This inhibition of induction is a prerequisite for glucose repression of the lactose-galactose metabolic pathway. On the other hand, induced LAC9 levels are required for optimal growth on galactose, since mutating the LAC9 binding site in the LAC9 promoter resulted in poor growth and reduced expression of LAC9-controlled genes. Thus, in addition to the GAL80-dependent regulation by protein-protein interaction, the regulation of LAC9 gene expression is an important parameter in determining carbon source control of the LAC-GAL regulon. Although the mode of control is different, the pattern of LAC9 gene regulation resembles that of the S. cerevisiae GAL4 gene, being lower in glucose and glucose-galactose than in galactose.


1999 ◽  
Vol 19 (12) ◽  
pp. 8461-8468 ◽  
Author(s):  
Yukio Mukai ◽  
Eri Matsuo ◽  
Sharon Y. Roth ◽  
Satoshi Harashima

ABSTRACT The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned fromKluyveromyces lactis (TUP1) andSchizosaccharomyces pombe (tup11 +). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11 + gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, anS. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiaecorresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11 + in combination with a disruption of tup12 +, anotherTUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1 +, suggesting thatS. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species.


2010 ◽  
Vol 10 (2) ◽  
pp. 226-236 ◽  
Author(s):  
Laura H. Bechard ◽  
Nathan Jamieson ◽  
Michael J. McEachern

ABSTRACT In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis . We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae , however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52 . Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis .


Sign in / Sign up

Export Citation Format

Share Document