scholarly journals Lack of Protective Osmolytes Limits Final Cell Density and Volumetric Productivity of Ethanologenic Escherichia coli KO11 during Xylose Fermentation

2004 ◽  
Vol 70 (5) ◽  
pp. 2734-2740 ◽  
Author(s):  
S. A. Underwood ◽  
M. L. Buszko ◽  
K. T. Shanmugam ◽  
L. O. Ingram

ABSTRACT Limited cell growth and the resulting low volumetric productivity of ethanologenic Escherichia coli KO11 in mineral salts medium containing xylose have been attributed to inadequate partitioning of carbon skeletons into the synthesis of glutamate and other products derived from the citrate arm of the anaerobic tricarboxylic acid pathway. The results of nuclear magnetic resonance investigations of intracellular osmolytes under different growth conditions coupled with those of studies using genetically modified strains have confirmed and extended this hypothesis. During anaerobic growth in mineral salts medium containing 9% xylose (600 mM) and 1% corn steep liquor, proline was the only abundant osmolyte (71.9 nmol ml−1 optical density at 550 nm [OD550] unit−1), and growth was limited. Under aerobic conditions in the same medium, twice the cell mass was produced, and cells contained a mixture of osmolytes: glutamate (17.0 nmol ml−1 OD550 unit−1), trehalose (9.9 nmol ml−1 OD550 unit−1), and betaine (19.8 nmol ml−1 OD550 unit−1). Two independent genetic modifications of E. coli KO11 (functional expression of Bacillus subtilis citZ encoding NADH-insensitive citrate synthase; deletion of ackA encoding acetate kinase) and the addition of a metabolite, such as glutamate (11 mM) or acetate (24 mM), as a supplement each increased the intracellular glutamate pool during fermentation, doubled cell growth, and increased volumetric productivity. This apparent requirement for a larger glutamate pool for increased growth and volumetric productivity was completely eliminated by the addition of a protective osmolyte (2 mM betaine or 0.25 mM dimethylsulfoniopropionate), consistent with adaptation to osmotic stress rather than relief of a specific biosynthetic requirement.

2002 ◽  
Vol 68 (3) ◽  
pp. 1071-1081 ◽  
Author(s):  
S. A. Underwood ◽  
M. L. Buszko ◽  
K. T. Shanmugam ◽  
L. O. Ingram

ABSTRACT Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD+. Expression of low-Km Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.


2019 ◽  
Vol 116 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
Martin Lemmerer ◽  
Juergen Mairhofer ◽  
Alexander Lepak ◽  
Karin Longus ◽  
Rainer Hahn ◽  
...  

1995 ◽  
Vol 312 (2) ◽  
pp. 465-469 ◽  
Author(s):  
K Smith ◽  
A Borges ◽  
M R Ariyanayagam ◽  
A H Fairlamb

Intracellular levels of glutathione and glutathionylspermidine conjugates have been measured throughout the growth phases of Escherichia coli. Glutathionylspermidine was present in mid-log-phase cells, and under stationary and anaerobic growth conditions accounted for 80% of the total glutathione content. N1,N8-bis(glutathionyl)spermidine (trypanothione) was undetectable under all growth conditions. The catalytic constant kcat/Km of recombinant E. coli glutathione reductase for glutathionylspermidine disulphide was approx. 11,000-fold lower than that for glutathione disulphide. The much higher catalytic constant for the mixed disulphide of glutathione and glutathionylspermidine (11% that of GSSG), suggests a possible explanation for the low turnover of trypanothione disulphide by E. coli glutathione reductase, given the apparent lack of a specific glutathionylspermidine disulphide reductase in E. coli.


2002 ◽  
Vol 68 (7) ◽  
pp. 3377-3384 ◽  
Author(s):  
Kay M. Frey ◽  
Fred B. Oppermann-Sanio ◽  
Holger Schmidt ◽  
Alexander Steinbüchel

ABSTRACT By the use of Escherichia coli DH1 harboring cphA from Synechocystis sp. strain PCC6803, large-scale production of cyanophycin at 30- and 500-liter culture volumes was established. Transcription of cphA was controlled by the thermosensitive cI857 repressor, which enabled induction of cphA by a simple temperature shift in the culture fluid. Maximum cyanophycin cell content of up to 24% (wt/wt) of cellular dry matter was obtained by induction in the early exponential growth phase and cultivation of the cells in terrific broth complex medium. Synthesis of cyanophycin was found to be strongly dependent on the presence of complex components, and in mineral salts medium the cells synthesized and accumulated cyanophycin only if Casamino Acids were added. Cultivations were done at the 500-liter scale, allowing the provision of cell mass for the preparation of cyanophycin at the kilogram scale. Isolation of cyanophycin was achieved by a new acid extraction procedure which allowed large-scale purification of the polyamide from whole cells.


2008 ◽  
Vol 59 (2) ◽  
pp. 357-359 ◽  
Author(s):  
Hideyuki Kimoto ◽  
Hidetoshi Matsuyama ◽  
Isao Yumoto ◽  
Kazuaki Yoshimune

1998 ◽  
Vol 180 (22) ◽  
pp. 5989-5996 ◽  
Author(s):  
Elena Maklashina ◽  
Deborah A. Berthold ◽  
Gary Cecchini

ABSTRACT Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth ofE. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth ofE. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.


2020 ◽  
Vol 212 ◽  
pp. 103583 ◽  
Author(s):  
Kristin Surmann ◽  
Marius Stopp ◽  
Sebastian Wörner ◽  
Vishnu M. Dhople ◽  
Uwe Völker ◽  
...  

2006 ◽  
Vol 28 (9) ◽  
pp. 671-676 ◽  
Author(s):  
S. Zhou ◽  
T. B. Grabar ◽  
K. T. Shanmugam ◽  
L. O. Ingram

2002 ◽  
Vol 184 (16) ◽  
pp. 4640-4643 ◽  
Author(s):  
Matthew I. Hutchings ◽  
Neeraj Mandhana ◽  
Stephen Spiro

ABSTRACT The Escherichia coli norVW genes encode a flavorubredoxin and NADH:(flavo)rubredoxin reductase, respectively, which are involved in nitric oxide detoxification under anaerobic growth conditions. Here it is shown that the norVW genes also have a role in protection against reactive nitrogen intermediates generated from nitroprusside. Transcription from the norV promoter is activated by the presence of nitroprusside in the growth medium; activation requires the product of a divergently transcribed regulatory gene, norR.


Sign in / Sign up

Export Citation Format

Share Document