scholarly journals Only a Few Fungal Species Dominate Highly Diverse Mycofloras Associated with the Common Reed

2006 ◽  
Vol 72 (2) ◽  
pp. 1118-1128 ◽  
Author(s):  
Karin Neubert ◽  
Kurt Mendgen ◽  
Henner Brinkmann ◽  
Stefan G. R. Wirsel

ABSTRACT Plants are naturally colonized by many fungal species that produce effects ranging from beneficial to pathogenic. However, how many of these fungi are linked with a single host plant has not been determined. Furthermore, the composition of plant-associated fungal communities has not been rigorously determined. We investigated these essential issues by employing the perennial wetland reed Phragmites australis as a model. DNA extracted from roots, rhizomes, stems, and leaves was used for amplification and cloning of internal transcribed spacer rRNA gene fragments originating from reed-associated fungi. A total of 1,991 clones from 15 clone libraries were differentiated by restriction fragment length polymorphism analyses into 345 operational taxonomical units (OTUs). Nonparametric estimators for total richness (Chao1 and ACE) and also a parametric log normal model predicted a total of about 750 OTUs if the libraries were infinite. Sixty-two percent of the OTUs sequenced were novel at a threshold of 3%. Several of these OTUs represented undocumented fungal species, which also included higher taxonomic levels. In spite of the high diversity of the OTUs, the mycofloras of vegetative organs were dominated by just a few typical fungi, which suggested that competition and niche differentiation influence the composition of plant-associated fungal communities. This suggestion was independently supported by the results of nested PCR assays specifically monitoring two OTUs over 3 years, which revealed significant preferences for host habitat and host organ.

2008 ◽  
Vol 74 (19) ◽  
pp. 6091-6101 ◽  
Author(s):  
Zheng Gao ◽  
Binglin Li ◽  
Chengchao Zheng ◽  
Guangyi Wang

ABSTRACT Symbiotic microbes play a variety of fundamental roles in the health and habitat ranges of their hosts. While prokaryotes in marine sponges have been broadly characterized, the diversity of sponge-inhabiting fungi has barely been explored using molecular approaches. Fungi are an important component of many marine and terrestrial ecosystems, and they may be an ecologically significant group in sponge-microbe interactions. This study tested the feasibility of using existing fungal primers for molecular analysis of sponge-associated fungal communities. None of the eight selected primer pairs yielded satisfactory results in fungal rRNA gene or internal transcribed spacer (ITS) clone library constructions. However, 3 of 10 denaturing gradient gel electrophoresis (DGGE) primer sets, which were designed to preferentially amplify fungal rRNA gene or ITS regions from terrestrial environmental samples, were successfully amplified from fungal targets in marine sponges. DGGE analysis indicated that fungal communities differ among different sponge species (Suberites zeteki and Mycale armata) and also vary between sponges and seawater. Sequence analysis of DGGE bands identified 23 and 21 fungal species from each of the two sponge species S. zeteki and M. armata, respectively. These species were representatives of 11 taxonomic orders and belonged to the phyla of Ascomycota (seven orders) and Basidiomycota (four orders). Five of these taxonomic orders (Malasseziales, Corticiales, Polyporales, Agaricales, and Dothideomycetes et Chaetothyriomcetes incertae sedis) have now been identified for the first time in marine sponges. Seven and six fungal species from S. zeteki and M. armata, respectively, are potentially new species because of their low sequence identity (≤98%) with their references in GenBank. Phylogenetic analysis indicated sponge-derived sequences were clustered into “marine fungus clades” with those from other marine habitats. This is the first report of molecular analysis of fungal communities in marine sponges, adding depth and dimension to our understanding of sponge-associated microbial communities.


2015 ◽  
Vol 81 (7) ◽  
pp. 2445-2454 ◽  
Author(s):  
Qichao Tu ◽  
Mengting Yuan ◽  
Zhili He ◽  
Ye Deng ◽  
Kai Xue ◽  
...  

ABSTRACTFungal communities play a major role as decomposers in the Earth's ecosystems. Their community-level responses to elevated CO2(eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2for 12 years. Long-term eCO2did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4+availability. This study provided novel insights into how eCO2shapes soil fungal communities in grassland ecosystems.


2021 ◽  
Vol 8 (1) ◽  
pp. 201805
Author(s):  
Man-Hong Ye ◽  
Shu-Hang Fan ◽  
Xiao-Yuan Li ◽  
Islam Mohd Tarequl ◽  
Chun-Xiang Yan ◽  
...  

American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus . The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.


2015 ◽  
Vol 61 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Fei Xia ◽  
Yan Liu ◽  
Guang-Rong Shen ◽  
Lian-Xian Guo ◽  
Xuan-Wei Zhou

Ophiocordyceps sinensis is a fungus that parasitizes caterpillars, and more than 30 species of filamentous fungi have been isolated from its fruiting body. However, its microbiological diversity remains unclear. Based on the clone library and quantitative PCR techniques, the bacterial flora and mycobiota of 3 different samples (larva, stromata/sclerotia, and surface soil) from natural O. sinensis specimens were investigated using primer sets that targeted the 16S rRNA gene and internal transcribed spacer region of ribosomal DNA. The results showed that the abundance of bacterial and fungal communities in the soil attached to the surface of O. sinensis was (6.4 ± 1.4) × 106 and (6.0 ± 0.3) × 107 copies/g dry matter, respectively, which was the highest compared with that in the larva and stromal samples. The main groups of bacteria in the O. sinensis samples were Proteobacteria and Actinobacteria, while Ascomycota was the most dominant fungal group in the 3 samples. At the genus level, Geomyces, Phoma, and Trichocladium were the dominant genera in the larval sample, while Geomyces and Cladosporium were the dominant genera in the stromal sample. In conclusion, a great number of bacterial and fungal species were present in naturally occurring O. sinensis specimens, and there was a high diversity of bacterial and fungal communities. These findings contribute to the understanding of the bacterial and fungal community structure of this valuable medicinal fungus and lay the foundation for the future discovery of new medicinal microorganism resources.


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Francesca De Filippis ◽  
Manolo Laiola ◽  
Giuseppe Blaiotta ◽  
Danilo Ercolini

ABSTRACT Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies. IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4965 ◽  
Author(s):  
Mary T.H.D. Nguyen ◽  
Torsten Thomas

Fungi play a critical role in a range of ecosystems; however, their interactions and functions in marine hosts, and particular sponges, is poorly understood. Here we assess the fungal community composition of three co-occurring sponges (Cymbastela concentrica, Scopalina sp., Tedania anhelans) and the surrounding seawater over two time points to help elucidate host-specificity, stability and potential core members, which may shed light into the ecological function of fungi in sponges. The results showed that ITS-amplicon-based community profiling likely provides a more realistic assessment of fungal diversity in sponges than cultivation-dependent approaches. The sponges studied here were found to contain phylogenetically diverse fungi (eight fungal classes were observed), including members of the family Togniniaceae and the genus Acrostalagmus, that have so far not been reported to be cultured from sponges. Fungal communities within any given sponge species were found to be highly variable compared to bacterial communities, and influenced in structure by the community of the surrounding seawater, especially considering temporal variation. Nevertheless, the sponge species studied here contained a few “variable/core” fungi that appeared in multiple biological replicates and were enriched in their relative abundance compared to seawater communities. These fungi were the same or highly similar to fungal species detected in sponges around the world, which suggests a prevalence of horizontal transmission where selectivity and enrichment of some fungi occur for those that can survive and/or exploit the sponge environment. Our current sparse knowledge about sponge-associated fungi thus indicate that fungal communities may perhaps not play as an important ecological role in the sponge holobiont compared to bacterial or archaeal symbionts.


2020 ◽  
Vol 10 (11) ◽  
pp. 3797
Author(s):  
Yin Jia ◽  
Liuyu Yin ◽  
Fengyu Zhang ◽  
Mei Wang ◽  
Mingliang Sun ◽  
...  

To avoid the lacquerware of the Nanhai No. 1 shipwreck from being corroded by microorganisms and to improve the knowledge on microbial ecology of the wood lacquers, we conducted a series of tests on the two water samples storing the lacquerware and colonies on the surface of the lacquerware. The high-throughput sequencing detected dominant fungal communities. After that, the fungal strains were isolated and then identified by amplification of ITS- 18S rRNA. Then the activity of ligninolytic and cellulolytic enzymes was detected on potato dextrose agar (PDA) plates with 0.04% (v/v) guaiacol and carboxymethyl cellulose (CMC) agar plates. Finally, we tested the biocide susceptibility of these fungi. Penicillium chrysogenum (NK-NH3) and Fusarium solani (NK- NH1) were the dominant fungi in the sample collected in April 2016 and June 2017. What is more, both showed activity of ligninolytic and cellulolytic enzymes. Four biocidal products (Preventol® D7, P91, BIT 20N, and Euxyl® K100) inhibited the growth of the fungal species in vitro effectively. In further research, the microbial community and environmental parameters in the museum should be monitored to assess the changes in the community and to detect potential microbial outbreaks.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1126
Author(s):  
Robert Korzeniewicz ◽  
Marlena Baranowska ◽  
Hanna Kwaśna ◽  
Gniewko Niedbała ◽  
Jolanta Behnke-Borowczyk

So far, there have been no studies on fungal communities in Prunus serotina (black cherry) wood. Our objectives were to characterize fungal communities from P. serotina wood and to evaluate effects of glyphosate (Glifocyd 360 SL) used on P. serotina stumps on abundance, species richness and diversity of those communities. In August 2016, in the Podanin Forest District, stumps of black cherry trees left after felling were treated with the herbicide. Control stumps were treated with water. Wood discs were cut from the surface of the stumps in May and July–August 2017. Eight treatment combinations (2 herbicide treatments × 2 disc sizes × 2 sample times) were tested. Sub-samples were pooled and ground in an acryogenic mill. Environmental DNA was extracted with a Plant Genomic DNA Purification Kit. The ITS1, 5.8S rDNA region was used to identify fungal species, using primers ITS1FI2 5′-GAACCWGCGGARGGATCA-3′ and 5.8S 5′-CGCTGCGTT CTTCATCG-3′. The amplicons were sequenced using the Illumina system. The results were subjected to bioinformatic analysis. Sequences were compared with reference sequences from the NCBI database using the BLASTn 2.8.0 algorithm. Abundance of fungi was defined as the number of Operational Taxonomic Units (OTUs), and diversity as the number of species in a sample. Differences between the number of OTUs and taxa were analyzed using the chi-squared test (χ2). Diversity in microbial communities was compared using diversity indices. A total of 54,644 OTUs were obtained. Culturable fungi produced 49,808 OTUs (91.15%), fungi not known from culture had 2571 OTUs (4.70%), non-fungal organisms had 1333 (2.44%) and organisms with no reference sequence in NCBI, 934 OTUs (1.71%). The total number of taxa ranged from 120 to 319. Fungi in stump wood were significantly more abundant in July–August than in May, in stumps >5 cm diameter than in stumps <5 cm diameter, in glyphosate-treated than in untreated stumps when sampled in May, and in untreated than in glyphosate-treated stumps when sampled in July–August. Species richness was significantly greater in July–August than in May, and in stumps >5 cm diameter than in stumps <5 cm diameter, either treated or untreated, depending on size. Herbicides can therefore affect the abundance and diversity of fungal communities in deciduous tree wood. The greater frequency of Ascomycota in herbicide-treated than in untreated stumps indicates their greater tolerance of glyphosate.


Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1480-1487 ◽  
Author(s):  
Guiping Yan ◽  
Richard W. Smiley ◽  
Patricia A. Okubara ◽  
Andrea Skantar ◽  
Sandra A. Easley ◽  
...  

A species-specific polymerase chain reaction (PCR) method was developed to detect and identify the root-lesion nematodes Pratylenchus neglectus and P. thornei from soil. A primer set was designed from Pratylenchus 28S rRNA gene sequences of the D3 expansion domain. Primer specificity was confirmed with 23 isolates of 15 nematode species and other plant-parasitic and non-plant-parasitic nematodes typically present in the soil communities, and with six fungal species commonly associated with wheat root rot. DNA obtained using a commercially available kit and a method developed in our laboratory gave comparable amplification. PCR conditions were optimized and the two species were differentiated by PCR products of 144 bp for P. neglectus and 288 bp for P. thornei. With this assay, we detected a single juvenile in 1 g of sterile, inoculated soil. Examination of 30 field soil samples revealed that this method was applicable to a range of soils naturally infested with these two pathogens in Oregon. This PCR-based method is rapid, efficient, and reliable, does not require expertise in nematode taxonomy and morphology, and could be used as a rapid diagnostic tool for commercial and research applications for disease forecasting and management.


2020 ◽  
Vol 8 (2) ◽  
pp. 259 ◽  
Author(s):  
Jūratė Lynikienė ◽  
Diana Marčiulynienė ◽  
Adas Marčiulynas ◽  
Artūras Gedminas ◽  
Miglė Vaičiukynė ◽  
...  

The aim was to assess fungal communities associated with living needles and soil of Pinus sylvestris in managed and unmanaged forest stands to get a better understanding of whether and how different intensities of forest management affects fungal diversity and community composition under the north temperate forest zone conditions. The study was carried out in three national parks in Lithuania. Each included five study sites in managed stands and five in unmanaged stands. At each site, three random soil cores and five random last-year needle samples were collected. Following DNA isolation, a DNA fragment of the ITS2 rRNA gene region of each sample was individually amplified and subjected to high-throughput sequencing. Analysis of 195,808 high-quality reads showed the presence of 1909 fungal taxa. Richness and composition of fungal taxa were similar in each substrate (needles and soil) in managed vs. unmanaged sites. The most common fungi in needles were Coleosporium campanulae (12.4% of all fungal sequences), Unidentified sp. 3980_1 (12.4%), Unidentified sp. 3980_4 (4.1%) and Sydowia polyspora (3.1%). In soil: Unidentified sp. 3980_21 (8.6%), Umbelopsis nana (8.2%), Archaeorhizomyces sp. 3980_5 (8.1%) and Penicillium spinulosum (6.3%). The results demonstrated that managed and unmanaged P. sylvestris stands support similar diversity and composition of fungal communities associated with living needles and soil.


Sign in / Sign up

Export Citation Format

Share Document