scholarly journals Integrated Approach to Malaria Control

2002 ◽  
Vol 15 (2) ◽  
pp. 278-293 ◽  
Author(s):  
Clive Shiff

SUMMARY Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 369
Author(s):  
Pasqua Veronico ◽  
Maria Teresa Melillo

Plant parasitic nematodes are annually responsible for the loss of 10%–25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


Author(s):  
Marilyn Joyce ◽  
Andrew J. Marcotte ◽  
Richard Barker ◽  
Edward J. Klinenberg

A methodology for identifying ergonomics risk factors and control strategies in office environments has been developed and pilot tested. Developed as part of an overall ergonomics program being implemented by the United States Air Force, the employees impacted include both civilian and military personnel performing a wide range of administrative tasks typically performed in offices. The research design included: a focused literature review; strategic site visits; and review of criteria established by the Air Force; an iterative developmental process of a Screening Survey and an Ergonomics Assessment Methodology Guide; and testing. The results indicate that the process can be used as an effective means for identifying and controlling ergonomics hazards in administrative work areas.


SIMULATION ◽  
2018 ◽  
Vol 95 (6) ◽  
pp. 529-543 ◽  
Author(s):  
RV Ram ◽  
PM Pathak ◽  
SJ Junco

A mobile manipulator is typically an assembly of a mobile robot base and an on-board manipulator arm. As the manipulator arm is mounted over the mobile robot base, the controller has the additional task of taking care of the disturbances of the mobile robot due to the dynamic interactions between the mobile robot base and manipulator arm. In the present work, dynamic models for the manipulator arm and an omni-wheeled mobile robot base were developed separately and then both were combined. Two control strategies, namely only manipulator arm control (OMAC) and simultaneous manipulator and base control (SMBC) were developed for the effective control of tip trajectory. In both strategies, an amnesia recovery coupled with classical proportional integral and derivative (PID) control was used. The bond graph methodology was used for the development of the dynamic model and control for the mobile manipulator. Simulation results are presented to illustrate the efficacy of the two control strategies.


2019 ◽  
Vol 188 (6) ◽  
pp. 987-990
Author(s):  
Nicole E Basta ◽  
M Elizabeth Halloran

Abstract The regression discontinuity design (RDD), first proposed in the educational psychology literature and popularized in econometrics in the 1960s, has only recently been applied to epidemiologic research. A critical aim of infectious disease epidemiologists and global health researchers is to evaluate disease prevention and control strategies, including the impact of vaccines and vaccination programs. RDDs have very rarely been used in this context. This quasi-experimental approach using observational data is designed to quantify the effect of an intervention when eligibility for the intervention is based on a defined cutoff such as age or grade in school, making it ideally suited to estimating vaccine effects given that many vaccination programs and mass-vaccination campaigns define eligibility in this way. Here, we describe key features of RDDs in general, then specific scenarios, with examples, to illustrate that RDDs are an important tool for advancing our understanding of vaccine effects. We argue that epidemiologic researchers should consider RDDs when evaluating interventions designed to prevent and control diseases. This approach can address a wide range of research questions, especially those for which randomized clinical trials would present major challenges or be infeasible. Finally, we propose specific ways in which RDDs could advance future vaccine research.


1997 ◽  
Vol 48 (4) ◽  
pp. 511 ◽  
Author(s):  
J. W. Heap

Reseda lutea L. is a major perennial weed of alkaline cropping soils in South Australia. Seed biology and early seedling growth of R. lutea were studied in field and laboratory experiments to gain information needed for effective control strategies. Recovery of intact seeds buried for 4 years in the field at 50 and 150 mm was 77–96%. Germination of this seed was 33–63% (50 mm) and 0% (150 mm). Germination patterns differed markedly between seed collected from 2 populations. Seed germinated at all constant and fluctuating temperatures between 10 and 35° C with the maximum (88%) at 25°C constant. Mean temperature, rather than constancy or fluctuation, determined the germination rate. Light strongly inhibited germination. Seedling shoot growth was slow but tap root growth was rapid, reaching 350 mm within 28 days of emergence. Secondary roots arose 3–7 days after emergence and shoot buds formed on the roots within 28 days. R. lutea was found to be well adapted for persistence in cultivated fields with a temperate climate.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xia Wang ◽  
Qian Li ◽  
Xiaodan Sun ◽  
Sha He ◽  
Fan Xia ◽  
...  

Abstract Background The COVID-19 pandemic is complex and is developing in different ways according to the country involved. Methods To identify the key parameters or processes that have the greatest effects on the pandemic and reveal the different progressions of epidemics in different countries, we quantified enhanced control measures and the dynamics of the production and provision of medical resources. We then nested these within a COVID-19 epidemic transmission model, which is parameterized by multi-source data. We obtained rate functions related to the intensity of mitigation measures, the effective reproduction numbers and the timings and durations of runs on medical resources, given differing control measures implemented in various countries. Results Increased detection rates may induce runs on medical resources and prolong their durations, depending on resource availability. Nevertheless, improving the detection rate can effectively and rapidly reduce the mortality rate, even after runs on medical resources. Combinations of multiple prevention and control strategies and timely improvement of abilities to supplement medical resources are key to effective control of the COVID-19 epidemic. A 50% reduction in comprehensive control measures would have led to the cumulative numbers of confirmed cases and deaths exceeding 590,000 and 60,000, respectively, by 27 March 2020 in mainland China. Conclusions Multiple data sources and cross validation of a COVID-19 epidemic model, coupled with a medical resource logistic model, revealed the key factors that affect epidemic progressions and their outbreak patterns in different countries. These key factors are the type of emergency medical response to avoid runs on medical resources, especially improved detection rates, the ability to promote public health measures, and the synergistic effects of combinations of multiple prevention and control strategies. The proposed model can assist health authorities to predict when they will be most in need of hospital beds and equipment such as ventilators, personal protection equipment, drugs, and staff.


2021 ◽  
Vol 11 (5) ◽  
pp. 2287
Author(s):  
Jonathan Medina-García ◽  
Aránzazu D. Martín ◽  
Juan M. Cano ◽  
Juan A. Gómez-Galán ◽  
Adoración Hermoso

The design, monitoring, and control of photovoltaic (PV) systems are complex tasks that are often handled together, and they are made even more difficult by introducing features such as real-time, sensor-based operation, wireless communication, and multiple sensor nodes. This paper proposes an integrated approach to handle these tasks, in order to achieve a system efficient in tracking the maximum power and injecting the energy from the PV modules to the grid in the correct way. Control is performed by means of an adaptive Lyapunov maximum power point tracking (MPPT) algorithm for the DC/DC converters and a proportional integral (PI) control for the inverters, which are applied to the system using low latency wireless technology. The system solution exploits a low-cost wireless multi-sensor architecture installed in each DC/DC converter and in each inverter and equipped with voltage, current, irradiance, and temperature sensors. A host node provides effective control, management, and coordination of two relatively independent wireless sensor systems. Experimental validation shows that the controllers ensure maximum power transfer to the grid, injecting low harmonic distortion current, thus guaranteeing the robustness and stability of the system. The results verified that the MPPT efficiency is over 99%, even under perturbations and using wireless communication. Moreover, the converters’ efficiency remains high, i.e., for the DC/DC converter a mean value of 95.5% and for the inverter 93.3%.


2003 ◽  
Vol 4 (1) ◽  
pp. 55 ◽  
Author(s):  
Dildo Márquez Lara

<p>Una variada gama de antihelmínticos modernos, con espectro amplio y alto grado de eficacia, como los benzimidazoles, los agonistas nicotínicos y las lactonas macrocíclicas, se encuentran disponibles comercialmente en el mundo para el control de las infecciones causadas por helmintos en rumiantes. El uso intensivo y la administración inadecuada de antihelmínticos, en épocas y grupos de rumiantes no apropiados, han contribuido al desarrollo de resistencia a estas sustancias, lo que constituye un obstáculo importante para el control de los endoparásitos. La resistencia antihelmíntica se ha reportado principalmente en pequeños rumiantes y es escasa la información relacionada con los nemátodos de bovinos. Se han identificado algunos factores aceleradores del proceso de desarrollo de resistencia, entre ellos factores genéticos, reproductivos y ecológicos de los parásitos, así como factores de orden antrópico, siendo la resistencia una característica heredable. El aumento de la resistencia a los antihelmínticos en la última década, así como los requerimientos de información sobre su ocurrencia e incidencia, han señalado la necesidad de desarrollar y estandarizar técnicas más sensibles para su detección. Hay varias técnicas disponibles <em>in vivo </em>e <em>in vitro </em>útiles para detectar la resistencia antihelmíntica, si bien la prueba de Reducción del Conteo de Huevos Fecales (RCH) es la más usada. La detección temprana de esta condición es un factor esencial para el control estratégico de los endoparásitos a fin de preservar la eficacia de los antihelmínticos. La presente revisión propone diferentes alternativas, químicas y no químicas, para el control de helmintos con el objeto de retardar la aparición de resistencia.</p><p> </p><p><strong>Anthelmintic resistance: origin, development and control</strong></p><p>A wide range of modern anthelmintics, with broad-spectrum and high efficacy to control helminth infections in ruminants, are commercially available, such as benzimidazoles, nicotinic agonist and macrocyclic lactones.The intensive use and inadequated dosages of anthelmintics in ruminants have contributed to develop resistance, becoming the main threat to control endoparasites. Anthelmintic resistance has been reported mainly in small ruminants, but there is scarce information about it in nematodes of cattle. Genetic, reproductive, ecological and anthropic factors have been found to enhance the development of resistance. Because nematode resistance has increased in the last decade, it is necessary to investigate about its occurrence and incidence; so, developing and standarization of improved techniques for detection of the resistance should be carried out. There are several techniques (<em>in vivo </em>and <em>in vitro</em>) available for detection of anthelmintic resistance, being the Faecal Egg Count Reduction Test (FECRT) the most commonly used. Early detection of resistance is an essential factor on parasite control strategies in order to preserve the effectiveness of anthelmintics. Different chemical and non-chemical helminth control strategies have been suggested in order to slow the onset of resistance.</p>


Sign in / Sign up

Export Citation Format

Share Document