scholarly journals Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4

2012 ◽  
Vol 11 (8) ◽  
pp. 989-1002 ◽  
Author(s):  
J. Ocampo ◽  
B. McCormack ◽  
E. Navarro ◽  
S. Moreno ◽  
V. Garre ◽  
...  

ABSTRACTThe protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungusMucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. InM. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is thatpkaR4is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. ThepkaR2null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting thatpkaR2participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role inM. circinelloidesphysiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway.

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Maureen J. Donlin ◽  
Rajendra Upadhya ◽  
Kimberly J. Gerik ◽  
Woei Lam ◽  
Laura G. VanArendonk ◽  
...  

ABSTRACTCryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely,PKC1,BCK1,MKK2, andMPK1results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions ofBCK1,MKK2, andMPK1compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis.IMPORTANCECryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.


1993 ◽  
Vol 264 (2) ◽  
pp. C464-C470 ◽  
Author(s):  
S. Fukayama ◽  
A. H. Tashjian ◽  
F. R. Bringhurst

We have used wild-type and adenosine 3',5'-cyclic monophosphate (cAMP)-resistant mutant osteoblast-like SaOS-2 cells to investigate the role of protein kinase A (PKA) in the regulation of cytosolic free Ca2+ concentration ([Ca2+]i). Basal levels of [Ca2+]i were the same in wild-type (127 +/- 6.1 nM) and transfected (117 +/- 6.8 nM) SaOS-2 cells, although 45Ca2+ efflux was slower in the transfected cells. In wild-type cells, thapsigargin (TG, > or = 200 nM), an inhibitor of the Ca(2+)-ATPase activity of the endoplasmic reticulum, acutely increased [Ca2+]i (by up to 2-fold), which then returned promptly to basal [Ca2+]i. In cAMP-resistant cells, TG elicited a significantly greater acute rise in [Ca2+]i, which then decayed to an elevated plateau level. In mutant cells, high concentrations of dibutyryladenosine 3',5'-cyclic monophosphate, which overcome the PKA blockade, restored the changes in [Ca2+]i to the wild-type pattern. In cAMP-resistant, TG-blocked cells, ionomycin (or alpha-thrombin) induced a further elevation in [Ca2+]i, which then declined rapidly to the original basal level. We conclude that basal PKA activity is involved actively in regulation of [Ca2+]i in SaOS-2 cells by promoting Ca2+ efflux from the cell and, possibly, by inhibiting Ca2+ release from or stimulating net Ca2+ sequestration into the ER. We have also obtained evidence for an alternate Ca(2+)-triggered Ca2+ reuptake mechanism in SaOS-2 cells that is not dependent on either Ca(2+)-ATPase or PKA.


1998 ◽  
Vol 95 (16) ◽  
pp. 9669-9674 ◽  
Author(s):  
Alan S. Lader ◽  
Yong-Fu Xiao ◽  
Yoshihiro Ishikawa ◽  
Yanning Cui ◽  
Dorothy E. Vatner ◽  
...  

The α subunit of the stimulatory heterotrimeric G protein (Gsα) is critical for the β-adrenergic receptor activation of the cAMP messenger system. The role of Gsα in regulating cardiac Ca2+ channel activity, however, remains controversial. Cultured neonatal cardiac myocytes from transgenic mice overexpressing cardiac Gsα were used to assess the role of Gsα on the whole-cell Ca2+ currents (ICa). Cardiac myocytes from transgenic mice had a 490% higher peak ICa compared with those of either wild-type controls or Gsα-nonexpressing littermates. The effect of Gsα overexpression was mimicked by intracellular dialysis of wild-type cardiac myocytes with GTPγS-activated Gsα. This effect was not mediated by protein kinase A activation as intracellular perfusion with a protein kinase A inhibitor rendered the same degree of activation in either transgenic or wild-type myocytes also dialyzed with activated Gsα. The data indicate that Gsα overexpression is associated with a constitutive enhancement of ICa which is independent of the cAMP pathway and activation of endogenous adenylyl cyclase.


1993 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
S-B Hu ◽  
L A Tannahill ◽  
S L Lightman

ABSTRACT Studies have been performed to investigate the regulation of arginine vasopressin (AVP) mRNA expression in fetal hypothalamic cultures. AVP mRNA-positive neurones were identified by in-situ hybridization histochemistry, and changes in mRNA expression were quantitated by nuclease protection assay. Both protein kinase C and protein kinase A activators increased the expression of AVP mRNA, in contrast to dexamethasone, which inhibited the responses to both protein kinase C and protein kinase A activation.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4331-4339 ◽  
Author(s):  
M.A. Price ◽  
D. Kalderon

The Hedgehog signal transduction pathway is involved in diverse patterning events in many organisms. In Drosophila, Hedgehog signaling regulates transcription of target genes by modifying the activity of the DNA-binding protein Cubitus interruptus (Ci). Hedgehog signaling inhibits proteolytic cleavage of full-length Ci (Ci-155) to Ci-75, a form that represses some target genes, and also converts the full-length form to a potent transcriptional activator. Reduction of protein kinase A (PKA) activity also leads to accumulation of full-length Ci and to ectopic expression of Hedgehog target genes, prompting the hypothesis that PKA might normally promote cleavage to Ci-75 by directly phosphorylating Ci-155. Here we show that a mutant form of Ci lacking five potential PKA phosphorylation sites (Ci5m) is not detectably cleaved to Ci-75 in Drosophila embryos. Moreover, changes in PKA activity dramatically altered levels of full-length wild-type Ci in embryos and imaginal discs, but did not significantly alter full-length Ci5m levels. We corroborate these results by showing that Ci5m is more active than wild-type Ci at inducing ectopic transcription of the Hh target gene wingless in embryos and that inhibition of PKA enhances induction of wingless by wild-type Ci but not by Ci5m. We therefore propose that PKA phosphorylation of Ci is required for the proteolysis of Ci-155 to Ci-75 in vivo. We also show that the activity of Ci5m remains Hedgehog responsive if expressed at low levels, providing further evidence that the full-length form of Ci undergoes a Hedgehog-dependent activation step.


Sign in / Sign up

Export Citation Format

Share Document