Role of protein kinase A in the regulation of cytosolic free calcium in human osteoblast-like SaOS-2 cells

1993 ◽  
Vol 264 (2) ◽  
pp. C464-C470 ◽  
Author(s):  
S. Fukayama ◽  
A. H. Tashjian ◽  
F. R. Bringhurst

We have used wild-type and adenosine 3',5'-cyclic monophosphate (cAMP)-resistant mutant osteoblast-like SaOS-2 cells to investigate the role of protein kinase A (PKA) in the regulation of cytosolic free Ca2+ concentration ([Ca2+]i). Basal levels of [Ca2+]i were the same in wild-type (127 +/- 6.1 nM) and transfected (117 +/- 6.8 nM) SaOS-2 cells, although 45Ca2+ efflux was slower in the transfected cells. In wild-type cells, thapsigargin (TG, > or = 200 nM), an inhibitor of the Ca(2+)-ATPase activity of the endoplasmic reticulum, acutely increased [Ca2+]i (by up to 2-fold), which then returned promptly to basal [Ca2+]i. In cAMP-resistant cells, TG elicited a significantly greater acute rise in [Ca2+]i, which then decayed to an elevated plateau level. In mutant cells, high concentrations of dibutyryladenosine 3',5'-cyclic monophosphate, which overcome the PKA blockade, restored the changes in [Ca2+]i to the wild-type pattern. In cAMP-resistant, TG-blocked cells, ionomycin (or alpha-thrombin) induced a further elevation in [Ca2+]i, which then declined rapidly to the original basal level. We conclude that basal PKA activity is involved actively in regulation of [Ca2+]i in SaOS-2 cells by promoting Ca2+ efflux from the cell and, possibly, by inhibiting Ca2+ release from or stimulating net Ca2+ sequestration into the ER. We have also obtained evidence for an alternate Ca(2+)-triggered Ca2+ reuptake mechanism in SaOS-2 cells that is not dependent on either Ca(2+)-ATPase or PKA.

2002 ◽  
Vol 22 (8) ◽  
pp. 2716-2727 ◽  
Author(s):  
Hidenori Shiraha ◽  
Angela Glading ◽  
Jeffrey Chou ◽  
Zongchao Jia ◽  
Alan Wells

ABSTRACT We have shown previously that the ELR-negative CXC chemokines interferon-inducible protein 10, monokine induced by gamma interferon, and platelet factor 4 inhibit epidermal growth factor (EGF)-induced m-calpain activation and thereby EGF-induced fibroblast cell motility (H. Shiraha, A. Glading, K. Gupta, and A. Wells, J. Cell Biol. 146:243-253, 1999). However, how this cross attenuation could be accomplished remained unknown since the molecular basis of physiological m-calpain regulation is unknown. As the initial operative attenuation signal from the CXCR3 receptor was cyclic AMP (cAMP), we verified that this second messenger blocked EGF-induced motility of fibroblasts (55% ± 4.5% inhibition) by preventing rear release during active locomotion. EGF-induced calpain activation was inhibited by cAMP activation of protein kinase A (PKA), as the PKA inhibitors H-89 and Rp-8Br-cAMPS abrogated cAMP inhibition of both motility and calpain activation. We hypothesized that PKA might negatively modulate m-calpain in an unexpected manner by directly phosphorylating m-calpain. A mutant human large subunit of m-calpain was genetically engineered to negate a putative PKA consensus sequence in the regulatory domain III (ST369/370AA) and was expressed in NR6WT mouse fibroblasts to represent about 30% of total m-calpain in these cells. This construct was not phosphorylated by PKA in vitro while a wild-type construct was, providing proof of the principle that m-calpain can be directly phosphorylated by PKA at this site. cAMP suppressed EGF-induced calpain activity of cells overexpressing a control wild-type human m-calpain (83% ± 3.7% inhibition) but only marginally suppressed that of cells expressing the PKA-resistant mutant human m-calpain (25% ± 5.5% inhibition). The EGF-induced motility of the cells expressing the PKA-resistant mutant also was not inhibited by cAMP. Structural modeling revealed that new constraints resulting from phosphorylation at serine 369 would restrict domain movement and help “freeze” m-calpain in an inactive state. These data point to a novel mechanism of negative control of calpain activation, direct phosphorylation by PKA.


1998 ◽  
Vol 95 (16) ◽  
pp. 9669-9674 ◽  
Author(s):  
Alan S. Lader ◽  
Yong-Fu Xiao ◽  
Yoshihiro Ishikawa ◽  
Yanning Cui ◽  
Dorothy E. Vatner ◽  
...  

The α subunit of the stimulatory heterotrimeric G protein (Gsα) is critical for the β-adrenergic receptor activation of the cAMP messenger system. The role of Gsα in regulating cardiac Ca2+ channel activity, however, remains controversial. Cultured neonatal cardiac myocytes from transgenic mice overexpressing cardiac Gsα were used to assess the role of Gsα on the whole-cell Ca2+ currents (ICa). Cardiac myocytes from transgenic mice had a 490% higher peak ICa compared with those of either wild-type controls or Gsα-nonexpressing littermates. The effect of Gsα overexpression was mimicked by intracellular dialysis of wild-type cardiac myocytes with GTPγS-activated Gsα. This effect was not mediated by protein kinase A activation as intracellular perfusion with a protein kinase A inhibitor rendered the same degree of activation in either transgenic or wild-type myocytes also dialyzed with activated Gsα. The data indicate that Gsα overexpression is associated with a constitutive enhancement of ICa which is independent of the cAMP pathway and activation of endogenous adenylyl cyclase.


2012 ◽  
Vol 11 (8) ◽  
pp. 989-1002 ◽  
Author(s):  
J. Ocampo ◽  
B. McCormack ◽  
E. Navarro ◽  
S. Moreno ◽  
V. Garre ◽  
...  

ABSTRACTThe protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungusMucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. InM. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is thatpkaR4is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. ThepkaR2null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting thatpkaR2participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role inM. circinelloidesphysiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway.


1993 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
S-B Hu ◽  
L A Tannahill ◽  
S L Lightman

ABSTRACT Studies have been performed to investigate the regulation of arginine vasopressin (AVP) mRNA expression in fetal hypothalamic cultures. AVP mRNA-positive neurones were identified by in-situ hybridization histochemistry, and changes in mRNA expression were quantitated by nuclease protection assay. Both protein kinase C and protein kinase A activators increased the expression of AVP mRNA, in contrast to dexamethasone, which inhibited the responses to both protein kinase C and protein kinase A activation.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4331-4339 ◽  
Author(s):  
M.A. Price ◽  
D. Kalderon

The Hedgehog signal transduction pathway is involved in diverse patterning events in many organisms. In Drosophila, Hedgehog signaling regulates transcription of target genes by modifying the activity of the DNA-binding protein Cubitus interruptus (Ci). Hedgehog signaling inhibits proteolytic cleavage of full-length Ci (Ci-155) to Ci-75, a form that represses some target genes, and also converts the full-length form to a potent transcriptional activator. Reduction of protein kinase A (PKA) activity also leads to accumulation of full-length Ci and to ectopic expression of Hedgehog target genes, prompting the hypothesis that PKA might normally promote cleavage to Ci-75 by directly phosphorylating Ci-155. Here we show that a mutant form of Ci lacking five potential PKA phosphorylation sites (Ci5m) is not detectably cleaved to Ci-75 in Drosophila embryos. Moreover, changes in PKA activity dramatically altered levels of full-length wild-type Ci in embryos and imaginal discs, but did not significantly alter full-length Ci5m levels. We corroborate these results by showing that Ci5m is more active than wild-type Ci at inducing ectopic transcription of the Hh target gene wingless in embryos and that inhibition of PKA enhances induction of wingless by wild-type Ci but not by Ci5m. We therefore propose that PKA phosphorylation of Ci is required for the proteolysis of Ci-155 to Ci-75 in vivo. We also show that the activity of Ci5m remains Hedgehog responsive if expressed at low levels, providing further evidence that the full-length form of Ci undergoes a Hedgehog-dependent activation step.


Sign in / Sign up

Export Citation Format

Share Document