scholarly journals Intervention of Bro1 in pH-Responsive Rim20 Localization in Saccharomyces cerevisiae

2010 ◽  
Vol 9 (4) ◽  
pp. 532-538 ◽  
Author(s):  
Jacob H. Boysen ◽  
Shoba Subramanian ◽  
Aaron P. Mitchell

ABSTRACT Yeast cells contain two Bro1 domain proteins: Bro1, which is required for endosomal trafficking, and Rim20, which is required for the response to the external pH via the Rim101 pathway. Rim20 associates with endosomal structures under alkaline growth conditions, when it promotes activation of Rim101 through proteolytic cleavage. We report here that the pH-dependent localization of Rim20 is contingent on the amount of Bro1 in the cell. Cells that lack Bro1 have increased endosomal Rim20-green fluorescent protein (GFP) under acidic conditions; cells that overexpress Bro1 have reduced endosomal Rim20-GFP under acidic or alkaline conditions. The novel endosomal association of Rim20-GFP in the absence of Bro1 requires ESCRT components including Vps27 but not specific Rim101 pathway components such as Dfg16. Vps27 influences the localization of Bro1 but is not required for RIM101 pathway activation in wild-type cells, thus suggesting that Rim20 enters the Bro1 localization pathway when a vacancy exists. Despite altered localization of Rim20, the lack of Bro1 does not bypass the need for signaling protein Dfg16 to activate Rim101, as evidenced by the expression levels of the Rim101 target genes RIM8 and SMP1. Therefore, endosomal association of Rim20 is not sufficient to promote Rim101 activation.

1998 ◽  
Vol 142 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Koji Okamoto ◽  
Philip S. Perlman ◽  
Ronald A. Butow

Green fluorescent protein (GFP) was used to tag proteins of the mitochondrial matrix, inner, and outer membranes to examine their sorting patterns relative to mtDNA in zygotes of synchronously mated yeast cells in ρ+ × ρ0 crosses. When transiently expressed in one of the haploid parents, each of the marker proteins distributes throughout the fused mitochondrial reticulum of the zygote before equilibration of mtDNA, although the membrane markers equilibrate slower than the matrix marker. A GFP-tagged form of Abf2p, a mtDNA binding protein required for faithful transmission of ρ+ mtDNA in vegetatively growing cells, colocalizes with mtDNA in situ. In zygotes of a ρ+ × ρ+ cross, in which there is little mixing of parental mtDNAs, Abf2p–GFP prelabeled in one parent rapidly equilibrates to most or all of the mtDNA, showing that the mtDNA compartment is accessible to exchange of proteins. In ρ+ × ρ0 crosses, mtDNA is preferentially transmitted to the medial diploid bud, whereas mitochondrial GFP marker proteins distribute throughout the zygote and the bud. In zygotes lacking Abf2p, mtDNA sorting is delayed and preferential sorting is reduced. These findings argue for the existence of a segregation apparatus that directs mtDNA to the emerging bud.


2005 ◽  
Vol 22 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Mira Wouters ◽  
Karine Smans ◽  
Jean-Marie Vanderwinden

In the small intestine, interstitial cells of Cajal (ICC) surrounding the myenteric plexus generate the pacemaking slow waves that are essential for an efficient intestinal transit. The underlying molecular mechanisms of the slow wave are poorly known. KIT is currently the sole practical marker for ICC. Attempts to purify living ICC have so far largely failed, due to the loss of the KIT epitope during enzymatic dissociation. Aiming to identify and isolate living ICC, we designed a knock-in strategy to express a fluorescent tag in KIT-expressing cells by inserting the sequence of the novel green fluorescent protein ZsGreen into the first exon of the c-Kit gene, creating a null allele called WZsGreen. In the gastrointestinal tract of heterozygous WZsGreen/+ mice, tiny ZsGreen fluorescent dots were observed in all KIT-expressing ICC populations, with exception of ICC at the deep muscular plexus in small intestine. During development of the gastrointestinal tract, ZsGreen expression followed KIT expression in a spatiotemporal way. Stellate and basket KIT-expressing cells in the molecular layer of the cerebellum also exhibited ZsGreen dots, whereas no ZsGreen was detected in skin, testis, and bone marrow. ZsGreen dot-containing intestinal cells could be isolated from jejunum and maintained alive in culture for at least 3 days. ZsGreen is a suitable alternative to EGFP in transgenic animals. The novel WZsGreen/+ model reported here appears to be a promising tool for live studies of KIT-expressing cells in the gastrointestinal tract and cerebellum and for the further analysis of pacemaker mechanisms.


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


2011 ◽  
Vol 441 (1) ◽  
pp. 209-217 ◽  
Author(s):  
Iraia García-Santisteban ◽  
Sonia Bañuelos ◽  
Jose A. Rodríguez

The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP–USP21 and, to a lesser extent, GFP–OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1464
Author(s):  
Fubiao Niu ◽  
Marta Kazimierska ◽  
Ilja M. Nolte ◽  
Miente Martijn Terpstra ◽  
Debora de Jong ◽  
...  

The expression of several microRNAs (miRNAs) is known to be changed in Burkitt lymphoma (BL), compared to its normal counterparts. Although for some miRNAs, a role in BL was demonstrated, for most of them, their function is unclear. In this study, we aimed to identify miRNAs that control BL cell growth. Two BL cell lines were infected with lentiviral pools containing either 58 miRNA inhibitors or 44 miRNA overexpression constructs. Eighteen constructs showed significant changes in abundance over time, indicating that they affected BL growth. The screening results were validated by individual green fluorescent protein (GFP) growth competition assays for fifteen of the eighteen constructs. For functional follow-up studies, we focused on miR-26b-5p, whose overexpression inhibited BL cell growth. Argonaute 2 RNA immunoprecipitation (Ago2-IP) in two BL cell lines revealed 47 potential target genes of miR-26b-5p. Overlapping the list of putative targets with genes showing a growth repression phenotype in a genome-wide CRISPR/Cas9 knockout screen, revealed eight genes. The top-5 candidates included EZH2, COPS2, KPNA2, MRPL15, and NOL12. EZH2 is a known target of miR-26b-5p, with oncogenic properties in BL. The relevance of the latter four targets was confirmed using sgRNAs targeting these genes in individual GFP growth competition assays. Luciferase reporter assay confirmed binding of miR-26b-5p to the predicted target site for KPNA2, but not to the other genes. In summary, we identified 18 miRNAs that affected BL cell growth in a loss- or gain-of-function screening. A tumor suppressor role was confirmed for miR-26b-5p, and this effect could at least in part be attributed to KPNA2, a known regulator of OCT4, c-jun, and MYC.


2004 ◽  
Vol 3 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Christina Vessoni Penna Thereza ◽  
Ishii Marina ◽  
de Souza Luciana.Cambricoli ◽  
Cholewa Olivia

2014 ◽  
Vol 13 (5) ◽  
pp. 635-647 ◽  
Author(s):  
Yang-Nim Park ◽  
Xiaohong Zhao ◽  
Yang-In Yim ◽  
Horia Todor ◽  
Robyn Ellerbrock ◽  
...  

ABSTRACT The [ PSI + ] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [ PSI + ], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [ PSI + ]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [ PSI + ] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [ PSI + ] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.


2007 ◽  
Vol 6 (8) ◽  
pp. 1299-1309 ◽  
Author(s):  
T. Krajaejun ◽  
G. M. Gauthier ◽  
C. A. Rappleye ◽  
T. D. Sullivan ◽  
B. S. Klein

ABSTRACT A high-throughput strategy for testing gene function would accelerate progress in our understanding of disease pathogenesis for the dimorphic fungus Blastomyces dermatitidis, whose genome is being completed. We developed a green fluorescent protein (GFP) sentinel system of gene silencing to rapidly study genes of unknown function. Using Gateway technology to efficiently generate RNA interference plasmids, we cloned a target gene, “X,” next to GFP to create one hairpin to knock down the expression of both genes so that diminished GFP reports target gene expression. To test this approach in B. dermatitidis, we first used LACZ and the virulence gene BAD1 as targets. The level of GFP reliably reported interference of their expression, leading to rapid detection of gene-silenced transformants. We next investigated a previously unstudied gene encoding septin and explored its possible role in morphogenesis and sporulation. A CDC11 septin homolog in B. dermatitidis localized to the neck of budding yeast cells. CDC11-silenced transformants identified with the sentinel system grew slowly as flat or rough colonies on agar. Microscopically, they formed ballooned, distorted yeast cells that failed to bud, and they sporulated poorly as mold. Hence, this GFP sentinel system enables rapid detection of gene silencing and has revealed a pronounced role for septin in morphogenesis, budding, and sporulation of B. dermatitidis.


Sign in / Sign up

Export Citation Format

Share Document