scholarly journals Hydrogen Production by Termite Gut Protists: Characterization of Iron Hydrogenases of Parabasalian Symbionts of the Termite Coptotermes formosanus

2007 ◽  
Vol 6 (10) ◽  
pp. 1925-1932 ◽  
Author(s):  
Jun-Ichi Inoue ◽  
Kanako Saita ◽  
Toshiaki Kudo ◽  
Sadaharu Ui ◽  
Moriya Ohkuma

ABSTRACT Cellulolytic flagellated protists in the guts of termites produce molecular hydrogen (H2) that is emitted by the termites; however, little is known about the physiology and biochemistry of H2 production from cellulose in the gut symbiotic protists due to their formidable unculturability. In order to understand the molecular basis for H2 production, we here identified two genes encoding proteins homologous to iron-only hydrogenases (Fe hydrogenases) in Pseudotrichonympha grassii, a large cellulolytic symbiont in the phylum Parabasalia, in the gut of the termite Coptotermes formosanus. The two Fe hydrogenases were phylogenetically distinct and had different N-terminal accessory domains. The long-form protein represented a phylogenetic lineage unique among eukaryotic Fe hydrogenases, whereas the short form was monophyletic with those of other parabasalids. Active recombinant enzyme forms of these two Fe hydrogenases were successfully obtained without the specific auxiliary maturases. Although they differed in their extent of specific activity and optimal pH, both enzymes preferentially catalyzed H2 evolution rather than H2 uptake. H2 evolution, at least that associated with the short-form enzyme, was still active even under high hydrogen partial pressure. H2 evolution activity was detected in the hydrogenosomal fraction of P. grassii cells; however, the vigorous H2 uptake activity of the endosymbiotic bacteria compensated for the strong H2 evolution activity of the host protists. The results suggest that termite gut symbionts are a rich reservoir of novel Fe hydrogenases whose properties are adapted to the gut environment and that the potential of H2 production in termite guts has been largely underestimated.

2002 ◽  
Vol 68 (6) ◽  
pp. 2869-2876 ◽  
Author(s):  
Krishnan Chandra Raj ◽  
Lee A. Talarico ◽  
Lonnie O. Ingram ◽  
Julie A. Maupin-Furlow

ABSTRACT Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein−1) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Xinning Zhang ◽  
Jared R. Leadbetter

ABSTRACTTermites and their gut microbes engage in fascinating dietary mutualisms. Less is known about how these complex symbioses have evolved after first emerging in an insect ancestor over 120 million years ago. Here we examined a bacterial gene, formate dehydrogenase (fdhF), that is key to the mutualism in 8 species of “higher” termite (members of theTermitidae, the youngest and most biomass-abundant and species-rich termite family). Patterns offdhFdiversity in the gut communities of higher termites contrasted strongly with patterns in less-derived (more-primitive) insect relatives (wood-feeding “lower” termites and roaches). We observed phylogenetic evidence for (i) the sweeping loss of several clades offdhFthat may reflect extinctions of symbiotic protozoa and, importantly, bacteria dependent on them in the last common ancestor of all higher termites and (ii) a radiation of genes from the (possibly) single allele that survived. Sweeping gene loss also resulted in (iii) the elimination of an entire clade of genes encoding selenium (Se)-independent enzymes from higher termite gut communities, perhaps reflecting behavioral or morphological innovations in higher termites that relaxed preexisting environmental limitations of Se, a dietary trace element. Curiously, several higher termite gut communities may have subsequently reencountered Se limitation, reinventing genes for Se-independent proteins via convergent evolution. Lastly, the presence of a novelfdhFlineage within litter-feeding and subterranean higher (but not other) termites may indicate recent gene “invasion” events. These results imply that cascades of perturbation and adaptation by distinct evolutionary mechanisms have impacted the evolution of complex microbial communities in a highly successful lineage of insects.IMPORTANCESince patterns of relatedness between termite hosts are broadly mirrored by the relatedness of their symbiotic gut microbiota, coevolution between hosts and gut symbionts is rightly considered an important force that has shaped dietary mutualism since its inception over 120 million years ago. Apart from that concerning lateral gene or symbiont transfer between termite gut communities (for which no evidence yet exists), there has been little discussion of alternative mechanisms impacting the evolution of mutualism. Here we provide strong gene-based evidence for past environmental perturbations creating significant upheavals that continue to reverberate throughout the gut communities of species comprising a single termite lineage. We suggest that symbiont extinction events, sweeping gene losses, evolutionary radiations, relaxation and reemergence of key nutritional pressures, convergent evolution of similar traits, and recent gene invasions have all shaped gene composition in the symbiotic gut microbial communities of higher termites, currently the most dominant and successful termite family on Earth.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3639-3648 ◽  
Author(s):  
Christoph Kiziak ◽  
Doris Conradt ◽  
Andreas Stolz ◽  
Ralf Mattes ◽  
Joachim Klein

The gene encoding an enantioselective arylacetonitrilase was identified on a 3·8 kb DNA fragment from the genomic DNA of Pseudomonas fluorescens EBC191. The gene was isolated, sequenced and cloned into the l-rhamnose-inducible expression vector pJOE2775. The nitrilase was produced in large quantities and purified as a histidine-tagged enzyme from crude extracts of l-rhamnose-induced cells of Escherichia coli JM109. The purified nitrilase was significantly stabilized during storage by the addition of 1 M ammonium sulfate. The temperature optimum (50 °C), pH optimum (pH 6·5), and specific activity of the recombinant nitrilase were similar to those of the native enzyme from P. fluorescens EBC191. The enzyme hydrolysed various phenylacetonitriles with different substituents in the 2-position and also heterocyclic and bicyclic arylacetonitriles to the corresponding carboxylic acids. The conversion of most arylacetonitriles was accompanied by the formation of different amounts of amides as by-products. The relative amounts of amides formed from different nitriles increased with an increasing negative inductive effect of the substituent in the 2-position. The acids and amides that were formed from chiral nitriles demonstrated in most cases opposite enantiomeric excesses. Thus mandelonitrile was converted by the nitrilase preferentially to R-mandelic acid and S-mandelic acid amide. The nitrilase gene is physically linked in the genome of P. fluorescens with genes encoding the degradative pathway for mandelic acid. This might suggest a natural function of the nitrilase in the degradation of mandelonitrile or similar naturally occurring hydroxynitriles.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1268
Author(s):  
Rosario Sánchez ◽  
Cristina Bahamonde ◽  
Carlos Sanz ◽  
Ana G. Pérez

Hydroxytyrosol derivatives are the most important phenolic components in virgin olive oil due to their well-demonstrated biological activities. In this regard, two phenyl acetaldehyde reductase genes, OePAR1.1 and OePAR1.2, involved in hydroxytyrosol synthesis, have been identified from an olive transcriptome. Both genes were synthesized and expressed in Escherichia coli, and their encoded proteins were purified. The recombinant enzymes display high substrate specificity for 2,4-dihydroxyphenylacetaldehyde (3,4-DHPAA) to form hydroxytyrosol. The reaction catalyzed by OePAR constitutes the second, and last, biochemical step in the formation of hydroxytyrosol from the amino acid L-3,4-dihydroxyphenylalanine (L-DOPA) in olive. OePAR1.1 and OePAR1.2 enzymes exhibit high thermal stability, similar pH optima (pH 6.5), and high affinity for 3,4-DHPAA (apparent Km 0.6 and 0.8 µmol min−1 mg−1, respectively). However, OePAR1.2 exhibited higher specific activity and higher expression levels in all the olive cultivars under study. The expression analyses indicate that both OePAR1.1 and OePAR1.2 genes are temporally regulated in a cultivar-dependent manner. The information provided here could be of interest for olive breeding programs searching for new olive genotypes with the capacity to produce oils with higher levels of hydroxytyrosol derivatives.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


Ensho ◽  
1995 ◽  
Vol 15 (1) ◽  
pp. 33-41
Author(s):  
Isao Nagaoka ◽  
Noriko Ishihara ◽  
Akimasa Someya ◽  
Kazuhisa Iwabuchi ◽  
Shin Yomogida ◽  
...  

1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Sign in / Sign up

Export Citation Format

Share Document