scholarly journals Pbx Proteins in Cryptococcus neoformans Cell Wall Remodeling and Capsule Assembly

2014 ◽  
Vol 13 (5) ◽  
pp. 560-571 ◽  
Author(s):  
Pardeep Kumar ◽  
Christian Heiss ◽  
Felipe H. Santiago-Tirado ◽  
Ian Black ◽  
Parastoo Azadi ◽  
...  

ABSTRACTThe cryptococcal capsule is a critical virulence factor of an important pathogen, but little is known about how it is associated with the cell or released into the environment. Two mutants lackingPBX1andPBX2were found to shed reduced amounts of the capsule polysaccharide glucuronoxylomannan (GXM). Nuclear magnetic resonance, composition, and physical analyses showed that the shed material was of normal mass but was slightly enriched in xylose. In contrast to previous reports, this material contained no glucose. Notably, the capsule fibers ofpbxΔ mutant cells grown under capsule-inducing conditions were present at a lower than usual density and were loosely attached to the cell wall. Mutant cell walls were also defective, as indicated by phenotypes including abnormal cell morphology, reduced mating filamentation, and altered cell integrity. All observed phenotypes were shared between the two mutants and exacerbated in a double mutant. Consistent with a role in surface glycan synthesis, the Pbx proteins localized to detergent-resistant membrane domains. These results, together with the sequence motifs in the Pbx proteins, suggest that Pbx1 and Pbx2 are redundant proteins that act in remodeling the cell wall to maintain normal cell morphology and precursor availability for other glycan synthetic processes. Their absence results in aberrant cell wall growth and metabolic imbalance, which together impact cell wall and capsule synthesis, cell morphology, and capsule association. The surface changes also lead to increased engulfment by host phagocytes, consistent with the lack of virulence ofpbxmutants in animal models.

1995 ◽  
Vol 108 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
E. Shelden ◽  
D.A. Knecht

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant cells are found primarily at the lateral edges of streams. Wild-type cells move at average rates of 8.5 +/- 4.9 microns/min within aggregation streams and can exhibit regular periodic movement at 3.5 minute intervals; half as long as the 7 minute period reported previously for isolated cells. Myosin II mutants under the same conditions move at 5.0 +/- 4.8 microns/min, twice as fast as reported previously for isolated myosin II mutant cells, and fail to display regular periodic movement. When removed from aggregation streams myosin II mutant cells move at only 2.5 +/- 2.0 microns/min, while wild-type cells under these conditions move at 5.9 +/- 4.5 microns/min. Analysis of cell morphology further reveals that myosin II mutant cells are grossly and dynamically deformed within wild-type aggregation streams but not when removed from streams and examined in isolation. These data reveal that the loss of myosin II has dramatic consequences for cells undergoing multicellular development. The segregation of mutant cells to aggregation stream edges demonstrates that myosin II mutants are unable to penetrate a multicellular mass of wild-type cells, while the observed distortion of myosin II mutant cells suggests that the cortex of such cells is too flacid to resist forces generated during movement. The increased rate of mutant cell movement and distortion of mutant cell morphology seen within wild-type aggregation streams further argues both that movement of wild-type cells within a multicellular mass can generate traction forces on neighboring cells and that mutant cell morphology and behavior can be altered by these forces. In addition, the distortion of myosin II mutant cells within wild-type aggregation streams indicates that myosin is not required for the formation of cell-cell contacts. Finally, the consequences of the loss of myosin II for cells during multicellular development are much more severe than has been previously revealed for isolated cells. The techniques used here to analyze the behavior of individual cells within multicellular aggregates provide a more sensitive assay of mutant cell phenotype than has been previously available and will be generally applicable to the study of motility and cytoskeletal mutants in Dictyostelium.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jad Sassine ◽  
Joana Sousa ◽  
Michael Lalk ◽  
Richard A. Daniel ◽  
Waldemar Vollmer

Abstract The peptidoglycan layer is responsible for maintaining bacterial cell shape and permitting cell division. Cell wall growth is facilitated by peptidoglycan synthases and hydrolases and is potentially modulated by components of the central carbon metabolism. In Bacillus subtilis, UgtP synthesises the glucolipid precursor for lipoteichoic acid and has been suggested to function as a metabolic sensor governing cell size. Here we show that ugtP mutant cells have increased levels of cell wall precursors and changes in their peptidoglycan that suggest elevated dl-endopeptidase activity. The additional deletion of lytE, encoding a dl-endopeptidase important for cell elongation, in the ugtP mutant background produced cells with severe shape defects. Interestingly, the ugtP lytE mutant recovered normal rod-shape by acquiring mutations that decreased the expression of the peptidoglycan synthase PBP1. Together our results suggest that cells lacking ugtP must re-adjust the balance between peptidoglycan synthesis and hydrolysis to maintain proper cell morphology.


2010 ◽  
Vol 9 (11) ◽  
pp. 1766-1775 ◽  
Author(s):  
Abhiram Maddi ◽  
Stephen J. Free

ABSTRACT The enzyme α-1,6-mannosyltransferase (OCH-1) is required for the synthesis of galactomannans attached to the N-linked oligosaccharides of Neurospora crassa cell wall proteins. The Neurospora crassa och-1 mutant has a tight colonial phenotype and a defective cell wall. A carbohydrate analysis of the och-1 mutant cell wall revealed a 10-fold reduction in the levels of mannose and galactose and a total lack of 1,6-linked mannose residues. Analysis of the integral cell wall protein from wild-type and och-1 mutant cells showed that the mutant cell wall had reduced protein content. The och-1 mutant was found to secrete 18-fold more protein than wild-type cells. Proteomic analysis of the proteins released by the mutant into the growth medium identified seven of the major cell wall proteins. Western blot analysis of ACW-1 and GEL-1 (two glycosylphosphatidylinositol [GPI]-anchored proteins that are covalently integrated into the wild-type cell wall) showed that high levels of these proteins were being released into the medium by the och-1 mutant. High levels of ACW-1 and GEL-1 were also released from the och-1 mutant cell wall by subjecting the wall to boiling in a 1% SDS solution, indicating that these proteins are not being covalently integrated into the mutant cell wall. From these results, we conclude that N-linked mannosylation of cell wall proteins by OCH-1 is required for their efficient covalent incorporation into the cell wall.


Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


Author(s):  
Eliza Louback ◽  
Diego Silva Batista ◽  
Tiago Augusto Rodrigues Pereira ◽  
Talita Cristina Mamedes-Rodrigues ◽  
Tatiane Dulcineia Silva ◽  
...  

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i6-i7
Author(s):  
Alişan Kayabölen ◽  
Gizem Nur Sahin ◽  
Fidan Seker ◽  
Ahmet Cingöz ◽  
Bekir Isik ◽  
...  

Abstract Mutations in IDH1 and IDH2 genes are common in low grade gliomas and secondary GBM and are known to cause a distinct epigenetic landscape in these tumors. To interrogate the epigenetic vulnerabilities of IDH-mutant gliomas, we performed a chemical screen with inhibitors of chromatin modifiers and identified 5-azacytidine, Chaetocin, GSK-J4 and Belinostat as potent agents against primary IDH1-mutant cell lines. Testing the combinatorial efficacy of these agents, we demonstrated GSK-J4 and Belinostat combination as a very effective treatment for the IDH1-mutant glioma cells. Engineering established cell lines to ectopically express IDH1R132H, we showed that IDH1R132H cells adopted a different transcriptome with changes in stress-related pathways that were reversible with the mutant IDH1 inhibitor, GSK864. The combination of GSK-J4 and Belinostat was highly effective on IDH1R132H cells, but not on wt glioma cells or nonmalignant fibroblasts and astrocytes. The cell death induced by GSK-J4 and Belinostat combination involved the induction of cell cycle arrest and apoptosis. RNA sequencing analyses revealed activation of inflammatory and unfolded protein response pathways in IDH1-mutant cells upon treatment with GSK-J4 and Belinostat conferring increased stress to glioma cells. Specifically, GSK-J4 induced ATF4-mediated integrated stress response and Belinostat induced cell cycle arrest in primary IDH1-mutant glioma cells; which were accompanied by DDIT3/CHOP-dependent upregulation of apoptosis. Moreover, to dissect out the responsible target histone demethylase, we undertook genetic approach and demonstrated that CRISPR/Cas9 mediated ablation of both KDM6A and KDM6B genes phenocopied the effects of GSK-J4 in IDH1-mutant cells. Finally, GSK-J4 and Belinostat combination significantly decreased tumor growth and increased survival in an orthotopic model in mice. Together, these results suggest a potential combination epigenetic therapy against IDH1-mutant gliomas.


2003 ◽  
Vol 14 (11) ◽  
pp. 4676-4684 ◽  
Author(s):  
Amy K.A. deHart ◽  
Joshua D. Schnell ◽  
Damian A. Allen ◽  
Ju-Yun Tsai ◽  
Linda Hicke

Efficient internalization of proteins from the cell surface is essential for regulating cell growth and differentiation. In a screen for yeast mutants defective in ligand-stimulated internalization of the α-factor receptor, we identified a mutant allele of TOR2, tor2G2128R. Tor proteins are known to function in translation initiation and nutrient sensing and are required for cell cycle progression through G1. Yeast Tor2 has an additional role in regulating the integrity of the cell wall by activating the Rho1 guanine nucleotide exchange factor Rom2. The endocytic defect in tor2G2128Rcells is due to disruption of this Tor2 unique function. Other proteins important for cell integrity, Rom2 and the cell integrity sensor Wsc1, are also required for efficient endocytosis. A rho1 mutant specifically defective in activation of the glucan synthase Fks1/2 does not internalize α-factor efficiently, and fks1Δ cells exhibit a similar phenotype. Removal of the cell wall does not inhibit internalization, suggesting that the function of Rho1 and Fks1 in endocytosis is not through cell wall synthesis or structural integrity. These findings reveal a novel function for the Tor2-Rho1 pathway in controlling endocytosis in yeast, a function that is mediated in part through the plasma membrane protein Fks1.


2003 ◽  
Vol 2 (5) ◽  
pp. 1018-1024 ◽  
Author(s):  
Neeraj Chauhan ◽  
Diane Inglis ◽  
Elvira Roman ◽  
Jesus Pla ◽  
Dongmei Li ◽  
...  

ABSTRACT Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30°C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or oxidative stress. We observed that Hog1p was phosphorylated in the ssk1 mutant of C. albicans when grown in a hyperosmotic medium but was not phosphorylated in the ssk1 mutant when the latter was grown in the presence of hydrogen peroxide. These data indicate that C. albicans utilizes the Ssk1p response regulator protein to adapt cells to oxidative stress, while its role in the adaptation to osmotic stress is less certain. Further, SSK1 appears to have a regulatory function in some aspects of cell wall biosynthesis. Thus, the functions of C. albicans SSK1 differ from those of S. cerevisiae SSK1.


2002 ◽  
Vol 184 (15) ◽  
pp. 4316-4320 ◽  
Author(s):  
Blazenka Soldo ◽  
Vladimir Lazarevic ◽  
Harold M. Pooley ◽  
Dimitri Karamata

ABSTRACT The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G→T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.


2017 ◽  
Vol 114 (17) ◽  
pp. E3434-E3443 ◽  
Author(s):  
Nina Ilic ◽  
Kıvanç Birsoy ◽  
Andrew J. Aguirre ◽  
Nora Kory ◽  
Michael E. Pacold ◽  
...  

OncogenicPIK3CAmutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found thatPIK3CAmutant cancer cells requirePIK3CAbut also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustainPIK3CAmutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy withinPIK3CAmutant cells. Reduced levels of aspartate deregulated the malate–aspartate shuttle, which is important for cytoplasmic NAD+regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, becausePIK3CAmutant cells exhibit a profound reliance on glucose metabolism, malate–aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene.


Sign in / Sign up

Export Citation Format

Share Document