scholarly journals Multifarious Transcriptional Regulation of Adhesion Protein Gene ap65-1 by a Novel Myb1 Protein in the Protozoan Parasite Trichomonas vaginalis

2006 ◽  
Vol 5 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Shiou-Jeng Ong ◽  
Hong-Ming Hsu ◽  
Hsing-Wei Liu ◽  
Chien-Hsin Chu ◽  
Jung-Hsiang Tai

ABSTRACT The transcription efficiency of an adhesion protein gene, ap65-1, in Trichomonas vaginalis varies with changes in the iron supply and with the growth stage. In the present study, two Myb recognition elements, MRE-1/MRE-2r and MRE-2f, were found to play antagonistic roles in regulating the iron-inducible activity of an ap65-1 reporter gene. Intriguingly, either of these elements was shown to be sufficient to repress basal activity, but together they were also shown to activate growth-related activity of the reporter gene in iron-depleted cells. A myb1 gene which encodes a 24-kDa protein containing a Myb-like R2R3 DNA binding domain was identified from Southwestern screening of MRE-2f-binding proteins. The Myb1 protein was detected as a major 35-kDa protein which exhibited variations in nuclear concentration with changes in the iron supply. A recombinant Myb1 protein was shown to differentially interact with MRE-1/MRE-2r and MRE-2f in vitro. Overexpression of hemagglutinin-tagged Myb1 in T. vaginalis resulted in repression or activation of ap65-1 transcription in iron-depleted cells at an early and a late stage of cell growth, respectively, while iron-inducible ap65-1 transcription was constitutively repressed. The hemagglutinin-tagged Myb1 protein was found to constantly occupy the chromosomal ap65-1 promoter at a proximal site, but it also selected two more distal sites only at the late growth stage. Together, these observations suggest that Myb1 critically regulates multifarious ap65-1 transcription, possibly via differential selection of multiple promoter sites upon environmental changes.

Author(s):  
Fatemeh Rahmani ◽  
Yahya Ehteshaminia ◽  
Hamid Mohammadi ◽  
Seif Ali Mahdavi

Introduction: Trichomonas vaginalis is a protozoan parasite that infects the urogenital tract of men and women and causes trichomoniasis, a common sexually transmitted disease in both men and women. The infection is often asymptomatic, but it can be accompanied by symptoms such as severe inflammation, itching and burning, foamy discharge and foul-smelling mucus. In one year, 250 million cases of Trichomonas vaginalis were reported worldwide. Material and Methods: In this study, the websites of PubMed, Google Scholar, SID, and Margiran were searched and related articles were reviewed.    Results: Today, the most common treatment for this disease is the use of metronidazole. However, its side effects, which include hematological and neurotoxic effects, cannot be ignored. Because of these side effects, researchers are looking for a suitable replacement for metronidazole in the treatment of trichomoniasis. Researchers' desire to use  herbs can be due to various reasons such as fewer side effects, better patient acceptance, recommendation of traditional medicine, lower prices of herbs and also compatibility with the normal physiological function of the human body. Conclusion: Considering the inhibitory effects of medicinal plants on the growth and proliferation of Trichomonas vaginalis in vitro, it can be concluded that the use of these plants can have many applications in the treatment of trichomoniasis. As a result, by studying more about their advantages and disadvantages, it is possible to make a drug that has higher therapeutic effects with fewer side effects.


Parasitology ◽  
2019 ◽  
Vol 146 (9) ◽  
pp. 1206-1216 ◽  
Author(s):  
Victor Midlej ◽  
Felipe Rubim ◽  
Wilmer Villarreal ◽  
Érica S. Martins-Duarte ◽  
Maribel Navarro ◽  
...  

AbstractTrichomonas vaginalis is a protozoan parasite that causes trichomoniasis in humans, the most prevalent non-viral sexually transmitted disease (STD). Imidazole compounds are used for the treatment of trichomoniasis, and metronidazole is the most commonly prescribed. However, these compounds can lead to parasite resistance and unwanted side effects. Therefore, there is a need for an alternative treatment for this disease. Here, we explored the potential of clotrimazole (CTZ) and zinc compounds, as well as CTZ complexed with zinc salts ([1] acetate [Zn(CTZ)2(Ac)2] and [2] a chloride [Zn(CTZ)2Cl2] complexes) against T. vaginalis. We synthesized the zinc complexed CTZ compounds and determined their concentration values that inhibited parasite growth by 50% (IC50). We used scanning and transmission electron microscopy to visualize the ultrastructural alterations induced by CTZ and their zinc complexes. The incubation of the parasites with [Zn(CTZ)2(Ac)2] complex inhibited their growth, yielding an IC50 of 4.9 µm. Moreover, there were changes in the shape of treated parasites, including the formation of surface projections that subsequently detached from the cell, in addition to changes in the hydrogenosomes, endoplasmic reticulum and Golgi complex. We found [Zn(CTZ)2(Ac)2] to be a highly effective compound against T. vaginalis in vitro, suggesting its potential utility as an alternative chemotherapy for trichomoniasis.


2001 ◽  
Vol 45 (6) ◽  
pp. 1743-1745 ◽  
Author(s):  
Graham H. Coombs ◽  
Jeremy C. Mottram

ABSTRACT Methionine γ-lyase, the enzyme which catalyzes the single-step conversion of methionine to α-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasiteTrichomonas vaginalis, to anaerobic bacteria containing methionine γ-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens.


1996 ◽  
Vol 40 (5) ◽  
pp. 1121-1125 ◽  
Author(s):  
E M Narcisi ◽  
W E Secor

Trichomonas vaginalis is a common sexually transmitted protozoan parasite. Although often considered simply a nuisance infection, T. vaginalis has been implicated in premature rupture of placental membranes and increases in the risk of acquiring human immunodeficiency virus. Metronidazole, a 5-nitroimidazole, is currently the drug of choice to treat T. vaginalis infection. Because some patients have severe reactions to metronidazole and others are infected with metronidazole-resistant T. vaginalis, we were prompted to investigate alternative therapies. Tinidazole, another 5-nitroimidazole used in other countries to treat T. vaginalis infections, and furazolidone, a nitrofuran presently used to treat giardiasis and infections with some anaerobic enteric bacteria, were investigated for effectiveness against 9 metronidazole-susceptible and 12 metronidazole-resistant T. vaginalis patient isolates. The in vitro aerobic and anaerobic minimum lethal concentrations (MLC) and the time for drug efficacy were determined. Tinidazole killed the metronidazole-susceptible isolates at a low MLC but was effective against only 4 of the 12 metronidazole-resistant isolates. In contrast, furazolidone was effective at a low MLC for all isolates. When tinidazole was effective, it required > 6 h to kill trichomonads. However, furazolidone killed both metronidazole-susceptible and resistant trichomonads within 2 to 3 h of exposure. These data suggest that furazolidone may be a good candidate for treating metronidazole-resistant trichomoniasis and that further investigation of this drug is warranted.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Zubeyde Akin Polat ◽  
Ali Cetin ◽  
Poul B. Savage

AbstractTrichomonosis, caused by the protozoan parasite


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nicola Palmieri ◽  
Marcelo de Jesus Ramires ◽  
Michael Hess ◽  
Ivana Bilic

Abstract Background Histomonas meleagridis is a protozoan parasite and the causative agent of histomonosis, an important poultry disease whose significance is underlined by the absence of any treatment and prophylaxis. The recent successful in vitro attenuation of the parasite urges questions about the underlying mechanisms. Results Whole genome sequence data from a virulent and an attenuated strain originating from the same parental lineage of H. meleagridis were recruited using Oxford Nanopore Technology (ONT) and Illumina platforms, which were combined to generate megabase-sized contigs with high base-level accuracy. Inspecting the genomes for differences identified two substantial deletions within a coding sequence of the attenuated strain. Additionally, one single nucleotide polymorphism (SNP) and indel targeting coding sequences caused the formation of premature stop codons, which resulted in the truncation of two genes in the attenuated strain. Furthermore, the genome of H. meleagridis was used for characterizing protein classes of clinical relevance for parasitic protists. The comparative analysis with the genomes of Trichomonas vaginalis, Tritrichomonas foetus and Entamoeba histolytica identified ~ 2700 lineage-specific gene losses and 9 gene family expansions in the H. meleagridis lineage. Conclusions Taken as a whole, the obtained data provide the first hints to understand the molecular basis of attenuation in H. meleagridis and constitute a genomics platform for future research on this important poultry pathogen.


Sexual Health ◽  
2009 ◽  
Vol 6 (4) ◽  
pp. 334 ◽  
Author(s):  
Jacqueline A. Upcroft ◽  
Linda A. Dunn ◽  
Tilda Wal ◽  
Sepehr Tabrizi ◽  
Maria G. Delgadillo-Correa ◽  
...  

Background: The prevalence of the sexually transmissible protozoan parasite Trichomonas vaginalis in the highlands of Papua New Guinea (PNG) has been reported to be as high as 46% and although not previously studied in Papua New Guinea, clinical resistance against metronidazole (Mz), the drug most commonly used to treat trichomoniasis, is well documented worldwide. This study was primarily aimed at assessing resistance to Mz in T. vaginalis strains from the Goroka region. Methods: Consenting patients presenting at the Goroka Base Hospital Sexually Transmitted Diseases (STD) Clinic and local women were asked to provide two vaginal swabs: one for culturing of the parasite; and one for polymerase chain reaction detection of T. vaginalis, Chlamydia trachomatis and Neisseria gonorrhoeae. T. vaginalis isolates were assayed for Mz susceptibility and a selection was genotyped. Results: The prevalence of T. vaginalis was determined to be 32.9% by culture and polymerase chain reaction of swabs among 82 local women and patients from the STD clinic. An unexpectedly high level of in vitro Mz resistance was determined with 17.4% of isolates displaying unexpectedly high resistance to Mz. The ability to identify isolates of T. vaginalis by genotyping was confirmed and the results revealed a more homogeneous T. vaginalis population in Papua New Guinea compared with isolates from elsewhere. Conclusion: T. vaginalis is highly prevalent in the Goroka region and in vitro Mz resistance data suggest that clinical resistance may become an issue.


2020 ◽  
pp. 34-36

The present study targets the protozoan parasite Trichomonas vaginalis that causes a healthy problem among women and rarely among men, by the application of natural product or secondary metabolites extracted from the microalgae Hapalosiphon aureus for the first time in Iraq. methanol extract was explained high activity in three concentration recording 100% of parasite death at 200 µg\ml of methanol extract in about two days while 150 and 100 µg\ml of extract reports activity against the parasite after fourand fivedays post treatment respectively. GC- Mass spectrum of the methanol extract has explain presence of the compound (2- deca - 3,d- dienyloxy) carbonyl benzeoic acid in about 13.28 % from the total composition of methanol extract of microalgae.


Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200192 ◽  
Author(s):  
Suhani B. Bhakta ◽  
Jose A. Moran ◽  
Frances Mercer

Trichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, Trichomonas vaginalis ( Tv ). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes. Like other infectious agents, pathogenesis from Tv infection is predicted to be the result of both parasite and host factors. At the site of infection, neutrophils are the most abundant immune cells present and probably play key roles in both parasite clearance and inflammatory pathology. Here, we discuss the evidence that neutrophils home to the site of Tv infection, kill the parasite, and that in some circumstances, parasites possibly evade neutrophil-directed killing. In vitro , the parasite is killed by neutrophils using a novel antimicrobial mechanism called trogocytosis, which probably involves both innate and adaptive immunity. While mechanisms of evasion are mostly conjecture at present, the persistence of Tv infections in patients argues strongly for their existence. Additionally, many strains of Tv harbour microbial symbionts Mycoplasma hominis or Trichomonasvirus , which are both predicted to impact neutrophil responses against the parasite. Novel research tools, especially animal models, will help to reveal the true outcomes of many factors involved in neutrophil- Tv interactions during trichomoniasis.


2018 ◽  
Author(s):  
Jully Pinheiro ◽  
Jacob Biboy ◽  
Waldemar Vollmer ◽  
Robert P. Hirt ◽  
Jeremy R. Keown ◽  
...  

AbstractTrichomonas vaginalisis a human eukaryotic pathogen and the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. This extracellular protozoan parasite is intimately associated with the human vaginal mucosa and microbiota but key aspects of the complex interactions between the parasite and the vaginal bacteria remain elusive. We report thatT. vaginalishas acquired, by lateral gene transfer from bacteria, genes encoding peptidoglycan hydrolases of the NlpC/P60 family. Two of theT. vaginalisenzymes were active against bacterial peptidoglycan, retaining the active site fold and specificity as DL-endopeptidases. The endogenous NlpC/P60 genes are transcriptionally up regulated inT. vaginaliswhen in the presence of bacteria. The over-expression of an exogenous copy produces a remarkable phenotype where the parasite is capable of competing out bacteria from mixed cultures, consistent with the biochemical activity of the enzymein vitro. Our study highlights the relevance of the interactions of this eukaryotic pathogen with bacteria, a poorly understood aspect on the biology of this important human parasite.Author summaryTrichomonas vaginalisis a protozoan parasite that causes a very common sexually transmitted disease known as trichomoniasis. This extracellular parasite resides in the vagina where it is in close association with the mucosa and the local microbiota. Very little is known about the nature of the parasite-bacteria interactions. Here, we report that this parasite had acquired genes from bacteria which retained their original function producing active enzymes capable of degrading peptidoglycan, a polymer that is chemically unique to the cell envelope of bacteria. Our results indicate that these enzymes help the parasite compete out bacteria in mixed cultures. These observations suggest that these enzymes may be critical for the parasite to establish infection in the vagina, a body site that is densely colonised with bacteria. Our study further highlights the importance of understanding the interactions between pathogens and microbiota, as the outcomes of these interactions are increasingly understood to have important implications on health and disease.


Sign in / Sign up

Export Citation Format

Share Document