scholarly journals Downmodulation of Effector Functions in NK Cells upon Toxoplasma gondii Infection

2017 ◽  
Vol 85 (10) ◽  
Author(s):  
M. Afifa Sultana ◽  
Ann Du ◽  
Berit Carow ◽  
Catrine M. Angbjär ◽  
Jessica M. Weidner ◽  
...  

ABSTRACT The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor β production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.

2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Nadine Radomski ◽  
Axel Karger ◽  
Kati Franzke ◽  
Elisabeth Liebler-Tenorio ◽  
Rico Jahnke ◽  
...  

ABSTRACT Dendritic cells (DCs) and natural killer (NK) cells are critically involved in the early response against various bacterial microbes. Functional activation of infected DCs and NK cell-mediated gamma interferon (IFN-γ) secretion essentially contribute to the protective immunity against Chlamydia. How DCs and NK cells cooperate during the antichlamydial response is not fully understood. Therefore, in the present study, we investigated the functional interplay between Chlamydia-infected DCs and NK cells. Our biochemical and cell biological experiments show that Chlamydia psittaci-infected DCs display enhanced exosome release. We find that such extracellular vesicles (referred to as dexosomes) do not contain infectious bacterial material but strongly induce IFN-γ production by NK cells. This directly affects C. psittaci growth in infected target cells. Furthermore, NK cell-released IFN-γ in cooperation with tumor necrosis factor alpha (TNF-α) and/or dexosomes augments apoptosis of both noninfected and infected epithelial cells. Thus, the combined effect of dexosomes and proinflammatory cytokines restricts C. psittaci growth and attenuates bacterial subversion of apoptotic host cell death. In conclusion, this provides new insights into the functional cooperation between DCs, dexosomes, and NK cells in the early steps of antichlamydial defense.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 76 (12) ◽  
pp. 5810-5816 ◽  
Author(s):  
Andréa Teixeira-Carvalho ◽  
Ricardo T. Fujiwara ◽  
Erik J. Stemmy ◽  
Denise Olive ◽  
Jesse M. Damsker ◽  
...  

ABSTRACT The impact of the interaction between excreted and/or secreted (ES) Necator americanus products and NK cells from Necator-infected individuals was analyzed. We investigated the binding of ES products to NK cells, the expression of NK cell receptors (CD56, CD159a/NKG2A, CD314/NKG2D, CD335/NKp46, and KLRF1/NKp80), the frequency of gamma interferon (IFN-γ)-producing NK cells after whole-blood in vitro stimulation, and the capacity of N. americanus ES products to induce NK cell chemotaxis. In contrast to those from noninfected individuals, NK cells from Necator-infected individuals demonstrated no binding with N. americanus ES products. This phenomenon was not due to alterations in NK cell receptor expression in infected subjects and could not be reproduced with NK cells from uninfected individuals by incubation with immunoregulatory cytokines (interleukin-10/transforming growth factor β). Further, we found that a significantly greater percentage of NK cells from infected subjects than NK cells from uninfected individuals spontaneously produced IFN-γ upon ex vivo culture. Our findings support a model whereby NK cells from Necator-infected individuals may interact with ES products, making these cells refractory to binding with exogenous ES products. During N. americanus infection, human NK cells are attracted to the site of infection by chemotactic ES products produced by adult Necator worms in the gut mucosa. Binding of ES products causes the NK cells to become activated and secrete IFN-γ locally, thereby contributing to the adult hookworm's ability to evade host immune responses.


2018 ◽  
Vol 24 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Simon Hayek ◽  
Nassima Bekaddour ◽  
Laurie Besson ◽  
Rodolphe Alves de Sousa ◽  
Nicolas Pietrancosta ◽  
...  

Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3690-3690
Author(s):  
Matthias Krusch ◽  
Julia Salih ◽  
Ingrid Kumbier ◽  
Carolin Fenner ◽  
Lothar Kanz ◽  
...  

Abstract Abstract 3690 Poster Board III-626 The phosphatidylinositol 3-kinase – protein kinase B – mammalian target of rapamycin (PI3K – AKT – mTOR) pathway was found to be abnormally activated in many malignancies. Thus, protein kinase (PK) inhibitors (PKI) targeting different signaling molecules of this pathway are presently under clinical evaluation e.g. in sarcoma, multiple myeloma, or renal cell cancer. However, PK are also responsible for most of the signal transduction in immune effector cells and control various effector mechanisms including proliferation, cellular cytotoxicity, and cytokine release. Among those immunoregulatory signaling pathways, the PI3K – AKT – mTOR pathway was found to play a central role in TLR-mediated release of cytokines in macrophages and DC as well as in the regulation of T cell functions. Little is known about the role of this pathway in NK cell-mediated anti-tumor reactivity. Here we analyzed the tumor cell-induced activation of PI3K, AKT, and mTOR in NK cells and the consequences of an inhibition of these molecules by therapeutic PKI for NK cell anti-tumor reactivity. We found that, in response to tumor target cells, PI3K, AKT, and mTOR are consecutively activated in NK cells as revealed by western blot analyses using phospho-specific antibodies. Presence of the specific PI3K-inhbitor BKM-120 concentration-dependently inhibited cytotoxicity and IFN-g production of NK cells, which is in line with available data defining PI3K as a central regulator of NK cell target recognition. The mTOR inhibitors Sirolimus, Temsirolimus, and Everolimus did not alter cytotoxicity but significantly impaired NK cell IFN-γ production. In contrast, Triciribine, a compound which inhibits the phosphorylation and thus activation of AKT, did not influence cytotoxicity and, tantalizingly, even enhanced NK cell IFN-γ production. Thus, after target cell recognition and the activation of proximal PK like PI3K, different and at least partially independent signaling events govern NK cell cytokine production and cellular cytotoxicity. While the activity of PI3K followed by the activation of mitogen-activated PK is known to be crucial for NK cell cytotoxicity, we here identified the AKT – mTOR pathway as a yet unknown central component in the regulation of NK cell IFN-γ production. Moreover, in light of the important role of NK cells in tumor immune surveillance our data indicate that the choise and dosing of the most suitable PKI for a given cancer patient requires careful consideration. In the future it will be critical to define potential differences in immunosuppressive and immunostimulatory side effects of different compounds among the rapidly growing assortment of multi-targeted PKI to enable therapeutic approaches combining targeting of crucial signaling pathways in tumor cells with immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 357-357 ◽  
Author(s):  
Ryan P Sullivan ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Catherine R Keppel ◽  
Elizabeth Germino ◽  
...  

Abstract Abstract 357 NK cells are innate immune lymphocytes important for early host defense against infectious pathogens and malignant transformation. MicroRNAs (miRNAs) are small regulatory RNAs that control a wide variety of cellular processes by specific targeting of mRNA 3'UTRs. The Dicer1 gene encodes a conserved enzyme essential for miRNA processing, and Dicer1 deficiency leads to a global defect in miRNA biogenesis. While miRNA expression and regulation of adaptive T and B lymphocytes are well established, their role in the regulation of NK cell biology remains unclear. We postulated that miRNAs serve an essential role in orchestrating NK cell development and activation. To test this hypothesis, we combined lymphocyte-restricted hCD2-Cre transgenic, Rosa26-YFP-Cre-reporter, and Dicer1 ‘floxed' mice. In this model, 25–50% of Dicer1 wt/wt NK cells are YFP+ marking expression of Cre. As expected, YFP+ NK cells from Dicer1 fl/fl and fl/wt mice were confirmed to excise Dicer1, and exhibit decreased total miRNA content based on Nanostring profiling and real-time qPCR (Dicer1 fl/fl: P<0.001, fl/wt: P<0.01). MiRNA-deficient Dicer1 fl/fl mice exhibited reduced YFP+ NK percentages (spleen Dicer1 fl/fl: 14±4%, fl/wt: 35±7%, wt/wt 36±7%, P<0.001) as well as reduced absolute numbers of YFP+ NK cells [spleen Dicer1 fl/fl: 3.4±0.6×10E5, fl/wt: 6.3±1.7×10E5, wt/wt 6.1±.99×10E5, P<0.01]. In addition, Dicer1 fl/fl mice had reductions NK cell precursors in the BM (stage 2–3 NK precursors mean decrease 70±14% in Dicer1 fl/fl compared to wt/wt, P <0.01). Further, Dicer1 fl/fl NK cells exhibited reduced survival ex vivo when cultured in medium (P<0.01), low dose- (P<0.01), or high dose-IL-15 (P<0.01). These data collectively indicate that Dicer1-dependent miRNAs regulate NK cell development and homeostasis, and the net effect of miRNA loss is impaired NK development and/or survival. However, in our model Dicer1-deficient mature NK cells exhibited enhanced functionality; a finding that contrasts to less NK selective miRNA-deficient NK cell models (Bezman et al. J Immunol 185:3835, 2010). Degranulation (CD107a+, a surrogate for cytotoxicity) was enhanced in vitro in response to YAC-1 tumor target cells (P<0.05) and activating NK cell receptor ligation (P<0.001). This was unlikely due to alteration in activating NK cell receptor expression since the surface density of NKG2D and NKp46 were not affected by miRNA deficiency. Moreover, interferon-gamma (IFN-γ) production was enhanced in vitro in miRNA-deficient NK cells in response to IL-12+IL-15 (P<0.01), YAC-1 tumor target cells (P<0.01), and activating NK cell receptor ligation (P<0.001). Further, evaluation of NK cells 36 hours after infection with MCMV resulted in significantly increased IFN-γ production (% NK YFP+IFN-γ+) in Dicer1 fl/fl (64± 4.9%) vs. fl/wt (52±11%, p <0.01) or vs. wt/wt (41±6%, p <0.001) in vivo. MiRs-15/16 were identified as abundant miRNAs in NK cells that had reduced expression in Dicer1 fl/fl NK cells, and are predicted to target the murine IFN-γ 3'UTR. This targeting was validated in vitro, by transfecting 293T cells with miRNA-15/16 or control over-expression vectors and a sensor plasmid that places luciferase under the control of the murine IFN-γ 3'UTR (34% decrease, P<0.01). Moreover, the targeting was direct, since miR-15/16 targeting of IFN-γ was abrogated after mutation of two predicted binding sites in the IFN-γ 3'UTR. These data indicated that miR-15/16 may regulate IFN-γ translation by resting NK cells. Thus, our study suggests that the function of miRNAs in NK cell biology is complex, with an important role in NK cell development, survival and/or homeostasis, while tempering peripheral NK cell activation. Further study of individual miRNAs in an NK cell specific fashion will provide insight into these complex miRNA regulatory effects in NK cell development/survival and effector function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3321-3330 ◽  
Author(s):  
R. Keith Reeves ◽  
Premeela A. Rajakumar ◽  
Tristan I. Evans ◽  
Michelle Connole ◽  
Jacqueline Gillis ◽  
...  

Abstract Natural killer (NK) cells are classically viewed as effector cells that kill virus-infected and neoplastic cells, but recent studies have identified a rare mucosal NK- cell subpopulation secreting the TH17 cytokine IL-22. Here, we report identification of 2 distinct lineages of mucosal NK cells characterized as NKG2A+NFIL3+RORC– and NKp44+NFIL3+RORC+. NKG2A+ NK cells were systemically distributed, cytotoxic, and secreted IFN-γ, whereas NKp44+ NK cells were mucosae-restricted, noncytotoxic, and produced IL-22 and IL-17. During SIV infection, NKp44+ NK cells became apoptotic, were depleted, and had an altered functional profile characterized by decreased IL-17 secretion; increased IFN-γ secretion; and, surprisingly, increased potential for cytotoxicity. NKp44+ NK cells showed no evidence of direct SIV infection; rather, depletion and altered function were associated with SIV-induced up-regulation of inflammatory mediators in the gut, including indoleamine 2,3-dioxygenase 1. Furthermore, treatment of NKp44+ NK cells with indoleamine 2,3-dioxygenase 1 catabolites in vitro ablated IL-17 production in a dose-dependent manner, whereas other NK-cell functions were unaffected. Thus lentiviral infection both depletes and modifies the functional repertoire of mucosal NK cells involved in the maintenance of gut integrity, a finding that highlights the plasticity of this rare mucosal NK-cell population.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Allison B. Powell ◽  
Sridevi Yadavilli ◽  
Devin Saunders ◽  
Stacey Van Pelt ◽  
Elizabeth Chorvinsky ◽  
...  

Abstract Background Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor β (TGF-β). Here, we address this challenge in in vitro models of MB. Methods CB-derived NK cells were modified to express a dominant negative TGF-β receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. Results We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-β-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-β (decreased TGF-β levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). Conclusions CB NK cells expressing a TGF-β DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-β-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 815-825 ◽  
Author(s):  
Hui-Li Yang ◽  
Wen-Jie Zhou ◽  
Kai-Kai Chang ◽  
Jie Mei ◽  
Li-Qing Huang ◽  
...  

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviorsin vitrowere analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cellsin vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.


Sign in / Sign up

Export Citation Format

Share Document