scholarly journals Vaccination of Mice with a Yop Translocon Complex Elicits Antibodies That Are Protective against Infection with F1−Yersinia pestis

2008 ◽  
Vol 76 (11) ◽  
pp. 5181-5190 ◽  
Author(s):  
Maya I. Ivanov ◽  
Betty L. Noel ◽  
Ryan Rampersaud ◽  
Patricio Mena ◽  
Jorge L. Benach ◽  
...  

ABSTRACT Yersinia pestis, the bacterial agent of plague, secretes several proteins important for pathogenesis or host protection. The F1 protein forms a capsule on the bacterial cell surface and is a well-characterized protective antigen but is not essential for virulence. A type III secretion system that is essential for virulence exports Yop proteins, which function as antiphagocytic or anti-inflammatory factors. Yop effectors (e.g., YopE) are delivered across the host cell plasma membrane by a translocon, composed of YopB and YopD. Complexes of YopB, YopD, and YopE (BDE) secreted by Yersinia pseudotuberculosis were purified by affinity chromatography and used as immunogens to determine if antibodies to the translocon could provide protection against Y. pestis in mice. Mice vaccinated with BDE generated high-titer immunoglobulin G antibodies specific for BDE, as shown by enzyme-linked immunosorbent assay and immunoblotting, and were protected against lethal intravenous challenge with F1− but not F1+ Y. pestis. Mice passively immunized with anti-BDE serum were protected from lethal challenge with F1− Y. pestis. The YopB protein or a complex of YopB and YopD (BD) was purified and determined by vaccination to be immunogenic in mice. Mice actively vaccinated with BD or passively vaccinated with anti-BD serum were protected against lethal challenge with F1− Y. pestis. These results indicate that anti-translocon antibodies can be used as immunotherapy to treat infections by F1− Y. pestis.

2012 ◽  
Vol 75 (9) ◽  
pp. 1555-1561 ◽  
Author(s):  
TONG ZHAO ◽  
PING ZHAO ◽  
MICHAEL P. DOYLE

Most available immunoassays for Yersinia pestis are based on the detection of fraction 1 antigen (F1) when yersiniae are grown at 37°C. A monoclonal antibody (MAb) was developed based on the detection of surface antigens that are not F1. F1-deficient Y. pestis cells were induced and used to immunize BALB/c mice from which MAb (immunoglobulin G1), which specifically recognizes Y. pestis, with or without F1, was obtained. This MAb (6B5) did not cross-react with enteric bacteria, including Yersinia enterocolitica. Enzyme-linked immunosorbent assay results revealed that MAb 6B5 is specific for Y. pestis, with the exception of a minor cross-reaction with Yersinia pseudotuberculosis. Western immunoblot analysis revealed that MAb 6B5 recognizes a Y. pestis outer membrane protein of ca. 30 kDa. Magnetic beads that were coated with MAb 6B5 were compared with beads coated with polyclonal antibody (PAb; rabbit) against Y. pestis for the isolation of Y. pestis in food and water samples by using a PATHATRIX cell concentration apparatus. Enrichment cultures of Y. pestis in different foods by using two different times (6 and 24 h) in brain heart infusion broth at 37°C were evaluated. Results revealed MAb 6B5–coated magnetic beads were equivalent to magnetic beads coated with PAb against Y. pestis A1122 whole cells in concentrating Y. pestis for isolation, especially when samples were enriched for 6 h. However, the selectivity for Y. pestis of the magnetic beads coated with MAb 6B5 was greater than that coated with PAb.


2001 ◽  
Vol 69 (5) ◽  
pp. 2888-2893 ◽  
Author(s):  
Shaul Reuveny ◽  
Moshe D. White ◽  
Yaakov Y. Adar ◽  
Yaron Kafri ◽  
Zeev Altboum ◽  
...  

ABSTRACT Vaccination by anthrax protective antigen (PA)-based vaccines requires multiple immunization, underlying the need to develop more efficacious vaccines or alternative vaccination regimens. In spite of the vast use of PA-based vaccines, the definition of a marker for protective immunity is still lacking. Here we describe studies designed to help define such markers. To this end we have immunized guinea pigs by different methods and monitored the immune response and the corresponding extent of protection against a lethal challenge with anthrax spores. Active immunization was performed by a single injection using one of two methods: (i) vaccination with decreasing amounts of PA and (ii) vaccination with constant amounts of PA that had been thermally inactivated for increasing periods. In both studies a direct correlation between survival and neutralizing-antibody titer was found (r 2 = 0.92 and 0.95, respectively). Most significantly, in the two protocols a similar neutralizing-antibody titer range provided 50% protection. Furthermore, in a complementary study involving passive transfer of PA hyperimmune sera to naive animals, a similar correlation between neutralizing-antibody titers and protection was found. In all three immunization studies, neutralization titers of at least 300 were sufficient to confer protection against a dose of 40 50% lethal doses (LD50) of virulent anthrax spores of the Vollum strain. Such consistency in the correlation of protective immunity with anti-PA antibody titers was not observed for antibody titers determined by an enzyme-linked immunosorbent assay. Taken together, these results clearly demonstrate that neutralizing antibodies to PA constitute a major component of the protective immunity against anthrax and suggest that this parameter could be used as a surrogate marker for protection.


2008 ◽  
Vol 76 (9) ◽  
pp. 3911-3923 ◽  
Author(s):  
Sarit Lilo ◽  
Ying Zheng ◽  
James B. Bliska

ABSTRACT Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1β (IL-1β) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1β was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1β following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1β were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.


2009 ◽  
Vol 77 (8) ◽  
pp. 3380-3388 ◽  
Author(s):  
Jon Oscherwitz ◽  
Fen Yu ◽  
Jana L. Jacobs ◽  
Te-Hui Liu ◽  
Philip R. Johnson ◽  
...  

ABSTRACT Current evidence suggests that protective antigen (PA)-based anthrax vaccines may elicit a narrow neutralizing antibody repertoire, and this may represent a vulnerability with PA-based vaccines. In an effort to identify neutralizing specificities which may complement those prevalent in PA antiserum, we evaluated whether sequences within the 2β2-2β3 loop of PA, which are apparent in the crystal structure of heptameric but not monomeric PA, might represent a target for an epitope-specific vaccine for anthrax and, further, whether antibodies to these sequences are induced in rabbits immunized with monomeric PA. We evaluated the immunogenicity in rabbits of a multiple antigenic peptide (MAP) displaying copies of amino acids (aa) 305 to 319 of this region. Overall, four out of six rabbits vaccinated with the MAP peptide in Freund's adjuvant developed high-titer, high-avidity antibody responses which cross-reacted with the immobilized peptide sequence comprising aa 305 to 319 and with PA, as determined by an enzyme-linked immunosorbent assay, and which displayed potent and durable neutralization of lethal toxin (LeTx) in vitro, with peak titers which were 452%, 100%, 67%, and 41% of the peak neutralization titers observed in positive-control rabbits immunized with PA. Importantly, analysis of sera from multiple cohorts of rabbits with high-titer immunity to PA demonstrated a virtual absence of this potent antibody specificity, and work by others suggests that this specificity may be present at only low levels in primate PA antiserum. These results highlight the potential importance of this immunologically cryptic neutralizing epitope from PA as a target for alternative and adjunctive vaccines for anthrax.


2008 ◽  
Vol 190 (24) ◽  
pp. 8163-8170 ◽  
Author(s):  
David L. Erickson ◽  
Clayton O. Jarrett ◽  
Julie A. Callison ◽  
Elizabeth R. Fischer ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-β-1,6-N-acetyl-d-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved β-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.


Author(s):  
Guang Li ◽  
Bo Wang ◽  
Xiangchao Ding ◽  
Xinghua Zhang ◽  
Jian Tang ◽  
...  

AbstractExtracellular vesicles (EVs) can be used for intercellular communication by facilitating the transfer of miRNAs from one cell to a recipient cell. MicroRNA (miR)-210-3p is released into the blood during sepsis, inducing cytokine production and promoting leukocyte migration. Thus, the current study aimed to elucidate the role of plasma EVs in delivering miR-210-3p in sepsis-induced acute lung injury (ALI). Plasma EVs were isolated from septic patients, after which the expression of various inflammatory factors was measured using enzyme-linked immunosorbent assay. Cell viability and apoptosis were measured via cell counting kit-8 and flow cytometry. Transendothelial resistance and fluorescein isothiocyanate fluorescence were used to measure endothelial cell permeability. Matrigel was used to examine the tubulogenesis of endothelial cells. The targeting relationship between miR-210-3p and ATG7 was assessed by dual-luciferase reporter assays. The expression of ATG7 and autophagy-related genes was determined to examine autophagic activation. A sepsis mouse model was established by cecal ligation and puncture (CLP)-induced surgery. The level of miR-210-3p was highly enriched in septic EVs. MiR-210-3p enhanced THP-1 macrophage inflammation, BEAS-2B cell apoptosis, and HLMVEC permeability while inhibiting angiogenesis and cellular activity. MiR-210-3p overexpression reduced ATG7 and LC3II/LC3I expression and increased P62 expression. Improvements in vascular density and autophagosome formation, increased ATG7 expression, and changes in the ratio of LC3II/LC3I were detected, as well as reduced P62 expression, in adenovirus-anti-miR-210-3p treated mice after CLP injury. Taken together, the key findings of the current study demonstrate that plasma EVs carrying miR-210-3p target ATG7 to regulate autophagy and inflammatory activation in a sepsis-induced ALI model.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaoxia Ye ◽  
Mingming Zhu ◽  
Xiaohang Che ◽  
Huiyang Wang ◽  
Xing-Jie Liang ◽  
...  

Abstract Background Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. Methods In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 μg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Results We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. Conclusions These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document