scholarly journals NEAT1 aggravates sepsis-induced acute kidney injury by sponging miR-22-3p

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Heyun Li ◽  
Xia Zhang ◽  
Peng Wang ◽  
Xiaoyan Zhou ◽  
Haiying Liang ◽  
...  

Abstract Background Sepsis is life-threatening disease with systemic inflammation and can lead to various diseases, including septic acute kidney injury (AKI). Recently, diverse circular RNAs (circRNAs) are considered to be involved in the development of this disease. In this study, we aimed to elucidate the role of circ-FANCA and the potential action mechanism in sepsis-induced AKI. Methods HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. The expression of circ-FANCA, microRNA-93-5p (miR-93-5p) and oxidative stress responsive 1 (OXSR1) mRNA was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was assessed using cell counting kit-8 (CCK-8) assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. The inflammatory response was monitored according to the release of pro-inflammatory cytokines via enzyme-linked immunosorbent assay (ELISA). The activities of oxidative indicators were examined using the corresponding kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the interaction between miR-93-5p and circ-FANCA or OXSR1. Protein analysis was conducted through western blot. Results Circ-FANCA was upregulated in septic AKI serum specimens and LPS-treated HK2 cells. Functionally, circ-FANCA knockdown facilitated cell proliferation and restrained apoptosis, inflammation and oxidative stress in LPS-triggered HK2 cells. Further mechanism analysis revealed that miR-93-5p was a target of circ-FANCA and circ-FANCA modulated LPS-induced cell damage by targeting miR-93-5p. Meanwhile, miR-93-5p overexpression repressed LPS-treated HK2 cell injury by sponging OXSR1. Furthermore, circ-FANCA regulated OXSR1 expression by sponging miR-93-5p. Besides, exosome-derived circ-FANCA was upregulated in LPS-induced HK2 cells, which was downregulated by GW4869. Conclusion Circ-FANCA knockdown attenuated LPS-induced HK2 cell injury by regulating OXSR1 expression via targeting miR-93-5p.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fei Gao ◽  
Mingjiang Qian ◽  
Guoyue Liu ◽  
Wanping Ao ◽  
Dahua Dai ◽  
...  

Abstract Background Severe sepsis, a major health problem worldwide, has become one of the leading causes of death in ICU patients. Further study on the pathogenesis and treatment of acute kidney injury (AKI) is of great significance to reduce high mortality rate of sepsis. In this study, the mechanism by which ubiquitin specific peptidase 10 (USP10) reduces sepsis-induced AKI was investigated. Ligation and perforation of cecum (CLP) was employed to establish C57BL/6 mouse models of sepsis. Hematoxylin-eosin (H&E) staining was performed to detect renal injury. The concentrations of serum creatinine (Cr), urea nitrogen (BUN) and cystatin C (Cys C) were determined using a QuantiChrom™ Urea Assay kit. RT-qPCR and western blot were conducted to assess the USP10 expression level. DHE staining was used to detect reactive oxygen species (ROS) levels. H2O2, MDA and SOD levels were assessed using corresponding colorimetric kits. Western blot was used to examine the expression levels of Bcl-2, Bax, cleaved caspase-3, Sirt6, Nrf2 and HO-1. MTT assay was used to determine cell viability, whereas TUNEL staining and flow cytometry were used to assess cell apoptosis. Results In this study, we found that USP10 was decreased in CLP-induced mouse renal tissues. We identified that USP10 alleviated renal dysfunction induced by CLP. Moreover, USP10 was found to reduce oxidative stress, and abated LPS-induced renal tubular epithelial cell injury and apoptosis. Finally, we discovered that USP10 promoted activation of the NRF2/HO-1 pathway through SIRT6 and attenuated LPS-induced renal tubular epithelial cell injury. Conclusions This study found that USP10 activates the NRF2/ARE signaling through SIRT6. USP10 alleviates sepsis-induced renal dysfunction and reduces renal tubular epithelial cell apoptosis and oxidative stress.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Li Wang ◽  
Hua Li

Abstract Objective: Diabetic nephropathy (DN) is one of the most severe and frequent diabetic complications. MicroRNAs (miRNAs) have been reported to play a vital role in DN pathogenesis. The present study aimed to investigate the molecular mechanism of miR-770-5p in DN. Methods: Podocyte injury model was established by treating mouse podocytes with high glucose (HG, 33 mM) for 24 h. The levels of miR-770-5p and TIMP3 were examined in kidney tissues and podocytes using quantitative real-time PCR (qRT-PCR). Flow cytometry analysis was applied to detect apoptosis in podocytes. Western blot assay was used to measure the protein levels of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax) and tissue inhibitors of metalloproteinase 3 (TIMP3). Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the levels of inflammatory factors. The interaction between miR-770-5p and TIMP3 was determined by MicroT-CDS and luciferase reporter assay. Results: MiR-770-5p was up-regulated and TIMP3 was down-regulated in DN kidney tissues and HG-stimulated podocytes. Depletion of miR-770-5p suppressed cell apoptosis and the release of pro-inflammatory factors in HG-treated podocytes. Additionally, TIMP3 was a target of miR-770-5p in HG-treated podocytes. TIMP3 inhibited cell apoptosis and inflammation in HG-treated podocytes. Moreover, TIMP3 knockdown alleviated the inhibitory effect of miR-770-5p silencing on podocyte apoptosis and inflammatory response. Conclusion: Knockdown of miR-770-5p suppressed podocyte apoptosis and inflammatory response by targeting TIMP3 in HG-treated podocytes, indicating that miR-770-5p may be a potential therapeutic target for DN therapy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shufen Li ◽  
Lifen Zhao ◽  
Xujiong Li ◽  
Gaiping Shang ◽  
Lijing Gao ◽  
...  

Objective. To assess whether miR-204 and HA affect A549 cell injury induced by lipopolysaccharide. Material and Methods. A549 cells were treated with hirsutanol A, and cell damage was induced by LPS followed by analysis of cell proliferation by CCK-8, cell apoptosis by flow cytometry, apoptosis-related protein expression by western blot, downstream target of miR-20 by dual-luciferase reporter gene, and inflammatory factors by ELISA and PCR. Results. LPS can significantly inhibit the viability of A549 cells, induce cell apoptosis, and promote the release of IL-6, IL-1β, and TNF-α, while HA pretreatment can target FOXK2 by upregulating miR-204 levels, thereby alleviating apoptosis and promoting cell viability and at the same time inhibiting the release of inflammatory factors by inhibiting the activation of NF-κB. Conclusions. miR-204 participates in the protection of HA acute lung injury by targeting FOXK2.


2014 ◽  
Vol 79 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Miklós Oldal ◽  
Viktória Németh ◽  
Mónika Madai ◽  
Gábor Kemenesi ◽  
Bianka Dallos ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Xiaoqin Liu ◽  
Qingzhao Li ◽  
Lixin Sun ◽  
Limei Chen ◽  
Yue Li ◽  
...  

Aims: This study aims to verify if miR-30e-5p targets Beclin1 (BECN1), a key regulator of autophagy, and investigate the function of miR-30e-5p and Beclin1 through mediating autophagy and apoptosis in contrast-induced acute kidney injury (CI-AKI). Methods: Human renal tubular epithelial HK-2 cells were treated with Urografin to construct a cell model of CI-AKI. Real-time reverse transcription–polymerase chain reaction was used to detect gene expression. The dual-luciferase reporting assay and endogenous validation were used to verify targeting and regulating function. The expressions of protein were detected using Western blot. Cell proliferation was detected using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Cell apoptosis was detected using terminal-deoxynucleoitidyl transferase mediated nick end labeling assay, and autophagy was detected using transmission electron microscopy. Results: HK-2 cells exposed to Urografin for 2 h induced a significant increase in miR-30e-5p. miR-30e-5p had a targeting effect on Beclin1. Moreover, Urografin exposure can enhance cell apoptosis by increasing caspase 3 gene expression and inhibiting autophagy, which was induced by decreased Beclin1 expression regulated by miR-30e-5p, thereby resulting in renal cell injury. Downregulation of miR-30e-5p or upregulation of Beclin1 restored cell vitality by promoting autophagy and suppressing apoptosis in Urografin-treated cells. Conclusions: Urografin increased the expression of miR-30e-5p in HK-2 cells and thus decreased Beclin1 levels to inhibit autophagy, but induced apoptosis, which may be the mechanism for CI-AKI.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guangjian Zhang ◽  
Qingdong Wang ◽  
Daoqing Su ◽  
Yingliang Xie

Objectives: Cerebral ischemic/reperfusion injury (CI/RI) is the clinical manifestation of cerebral ischemic stroke, which severely affects the health and life of the patients. We aimed to investigate the regulatory mechanism of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on CI/RI in this study.Methods: The expression of lncRNA MALAT1 and miR-375 was detected by qRT-PCR. MTT was utilized to measure the viability of PC-12 cells. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and reactive oxygen species (ROS) were detected by LDH assay, SOD assay, and ROS assay, respectively. The apoptosis rate of PC-12 cells was measured by flow cytometry analysis. Through enzyme-linked immunosorbent assay, the levels of NF-α, IL-1β, and IL-6 were determined. The interactions between miR-375 and MALAT1/PDE4D were predicted by Starbase/Targetscan software and verified by the dual-luciferase reporter assay. Western blot assay was performed to determine the protein expression of Bcl-2, Caspase-3, and PDE4D.Results: LncRNA MALAT1 expression was highly upregulated in the middle cerebral artery occlusion (MCAO)/reperfusion (R) model of rats. Both MALAT1 downregulation and miR-375 upregulation reversed the inhibitory effect of oxygen and glucose deprivation (OGD)/R on cell viability and the promoting effects on LDH level, cell apoptosis, and inflammatory factors levels. MALAT1 targeted miR-375, whereas miR-375 targeted PDE4D. Overexpression of miR-375 attenuated OGD/R-induced injury in PC-12 cells by targeting PDE4D. Both the low expression of miR-375 and high expression of PDE4D reversed the promoting effect of MALAT1 knockdown on SOD level and the inhibitory effects on ROS level, inflammatory factor levels, and cell apoptosis.Conclusion: Suppression of MALAT1 alleviates CI/RI of rats through regulating the miR-375/PDE4D axis. This study provides a possible therapeutic strategy for human CI/RI in clinic.


2019 ◽  
Author(s):  
Anying Wang ◽  
Naixia Hu ◽  
Yefeng Zhang ◽  
Yuanzhen Chen ◽  
Changhui Su ◽  
...  

Abstract Background: This study aimed to investigate the role of long noncoding RNA (lncRNA) maternally expressed 3 (MEG3) and related molecular mechanisms in osteoarthritis (OA). Methods: Patients with OA and patients undergoing thigh amputation were involved in OA group and control group, respectively. Cartilage tissues of all patients were isolated and cultured. Based on different transfection, MEG3 cells were grouped into Blank, pcDNA3.1-NC, pcDNA3.1-MEG3, si-NC, si-MEG3, pcDNA3.1-NC + mimics NC, pcDNA3.1-MEG3 + mimics NC, pcDNA3.1-NC + miR-361-5p mimics and pcDNA3.1-MEG3 + miR-361-5p mimics group. The cells transfected with pcDNA3.1-NC and pcDNA3.1-MEG3, and then cultured with XAV939 was named as pcDNA3.1-NC +XAV939 group and pcDNA3.1-MEG3 + XAV939 group respectively. The RT-qPCR was used to detect the expression of MEG3 and miR-361-5p. Moreover, Western blot, luciferase reporter assay, RIP, CCK-8 and flow cytometry analysis were performed to reveal the morphology, proliferation and apoptosis in cartilage cells. Finally, the histological analysis and immunostaining were performed on OA rat model. Results: The expression of lncRNA MEG3 and miR-361-5p in OA was significantly decreased and increased respectively than that in normal. Meanwhile, MEG3 was competitive binding with miR-361-5p in OA chondrocytes. Moreover, the Western blot and CCK-8 assay showed that MEG3 might inhibit cell proliferation and promote cell apoptosis via Wnt/β-catenin pathway. Finally, rat model analysis showed that MEG3 contributed to the cartilage matrix degradation. Conclusion: MEG3 and miR-361-5p might down-regulated and up-regulated respectively in the chondrocytes of OA patients. Furthermore, MEG3 might inhibit cell proliferation and promote cell apoptosis via miR-361-5p/Wnt/β-catenin axis in OA chondrocytes.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhenye Guo ◽  
Huan Wang ◽  
Feng Zhao ◽  
Min Liu ◽  
Feida Wang ◽  
...  

Abstract Background Circular RNAs (circRNAs) can act as vital players in osteoarthritis (OA). However, the roles of circRNAs in OA remain obscure. Herein, we explored the roles of exosomal circRNA bromodomain and WD repeat domain containing 1(circ-BRWD1) in OA pathology. Methods In vitro model of OA was constructed by treating CHON-001 cells with interleukin-1β (IL-1β). Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used for circ-BRWD1, BRWD, miR-1277, and TNF receptor-associated factor 6 (TRAF6) levels. RNase R assay was conducted for the feature of circ-BRWD1. Transmission electron microscopy (TEM) was employed to analyze the morphology of exosomes. Western blot assay was performed for protein levels. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, and 5-Ethynyl-2′-deoxyuridine (EDU) assay were adopted for cell viability, apoptosis, and proliferation, respectively. Enzyme-linked immunosorbent assay (ELISA) was carried out for the concentrations of interleukin-6 (IL-6) and interleukin-8 (IL-8). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to analyze the interaction between miR-1277 and circ-BRWD1 or TRAF6. Results Circ-BRWD1 was increased in OA cartilage tissues, IL-1β-treated CHON-001 cells, and the exosomes derived from IL-1β-treated CHON-001 cells. Exosome treatment elevated circ-BRWD1 level, while exosome blocker reduced circ-BRWD1 level in IL-1β-treated CHON-001 cells. Silencing of circ-BRWD1 promoted cell viability and proliferation and repressed apoptosis, inflammation, and extracellular matrix (ECM) degradation in IL-1β-stimulated CHON-001 cells. For mechanism analysis, circ-BRWD1 could serve as the sponge for miR-1277 to positively regulate TRAF6 expression. Moreover, miR-1277 inhibition ameliorated the effects of circ-BRWD1 knockdown on IL-1β-mediated CHON-001 cell damage. Additionally, miR-1277 overexpression relieved IL-1β-induced CHON-001 cell injury, while TRAF6 elevation restored the impact. Conclusion Exosomal circ-BRWD1 promoted IL-1β-induced CHON-001 cell progression by regulating miR-1277/TRAF6 axis.


Sign in / Sign up

Export Citation Format

Share Document