scholarly journals Caspase-11 Plays a Protective Role in Pulmonary Acinetobacter baumannii Infection

2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Wei Wang ◽  
Yue Shao ◽  
Shengjun Li ◽  
Na Xin ◽  
Tingxian Ma ◽  
...  

ABSTRACT Activation of caspase-11 by some Gram-negative bacteria triggers the caspase-1/interleukin 1β (IL-1β) pathway, independent of canonical inflammasomes. Acinetobacter baumannii is a Gram-negative, conditionally pathogenic bacterium that can cause severe pulmonary infection in hospitalized patients. A. baumannii was revealed to activate canonical and noncanonical inflammasome pathways in bone marrow-derived macrophages (BMDMs). Pulmonary infection of caspase-11−/− mice with A. baumannii showed that caspase-11 deficiency impaired A. baumannii clearance, exacerbated pulmonary pathological changes, and enhanced susceptibility to A. baumannii. These data indicate that the caspase-11-mediated innate immune response plays a crucial role in defending against A. baumannii.

2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Emma Nagy ◽  
Richard Losick ◽  
Daniel Kahne

ABSTRACT Lipopolysaccharide (LPS) is normally considered to be essential for viability in Gram-negative bacteria but can be removed in Acinetobacter baumannii. Mutant cells lacking this component of the outer membrane show growth and morphological defects. Here, we report that growth rates equivalent to the wild type can be achieved simply by propagation in minimal medium. The loss of LPS requires that cells rely on phospholipids for both leaflets of the outer membrane. We show that growth rate in the absence of LPS is not limited by nutrient availability but by the rate of outer membrane biogenesis. We hypothesize that because cells grow more slowly, outer membrane synthesis ceases to be rate limiting in minimal medium. IMPORTANCE Gram-negative bacteria are defined by their asymmetric outer membrane that consists of phospholipids on the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. LPS is essential in all but a few Gram-negative species; the reason for this differential essentiality is not well understood. One species that can survive without LPS, Acinetobacter baumannii, shows characteristic growth and morphology phenotypes. We show that these phenotypes can be suppressed under conditions of slow growth and describe how LPS loss is connected to the growth defects. In addition to better defining the challenges A. baumannii cells face in the absence of LPS, we provide a new hypothesis that may explain the species-dependent conditional essentiality.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei-Feng Wang ◽  
Xiao-Yong Xie ◽  
Kang Chen ◽  
Xiu-Li Chen ◽  
Wei-Lin Zhu ◽  
...  

Chinese horseshoe crab, Tachypleus tridentatus, is an ancient marine arthropod with a long evolutionary history. As a kind of living fossil species, the pathogen defenses of horseshoe crabs entirely depend on the innate immune system. Although, there are abundant immune molecules found in the horseshoe crab hemolymph, the biological mechanisms underlying their abilities of distinguishing and defending against invading microbes are still unclear. In this study, we used high-throughput sequencing at mRNA and protein levels and bioinformatics analysis methods to systematically analyze the innate immune response to Gram-negative bacteria in hemolymph of Chinese horseshoe crab. These results showed that many genes in the complement and coagulation cascades, Toll, NF-κB, C-type lectin receptor, JAK-STAT, and MAPK signaling pathways, and antimicrobial substances were activated at 12 and 24 h post-infection, suggesting that Gram-negative bacteria could activate the hemolymph coagulation cascade and antibacterial substances release via the above pathways. In addition, we conjectured that Toll and NF-κB signaling pathway were most likely to participate in the immune response to Gram-negative bacteria in hemolymph of horseshoe crab through an integral signal cascade. These findings will provide a useful reference for exploring the ancient original innate immune mechanism.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Timothy C. Umland ◽  
L. Wayne Schultz ◽  
Ulrike MacDonald ◽  
Janet M. Beanan ◽  
Ruth Olson ◽  
...  

ABSTRACTA critical feature of a potential antimicrobial target is the characteristic of being essential for growth and survival during host infection. For bacteria, genome-wide essentiality screens are usually performed on rich laboratory media. This study addressed whether genes detected in that manner were optimal for the identification of antimicrobial targets since thein vivomilieu is fundamentally different. Mutant derivatives of a clinical isolate ofAcinetobacter baumanniiwere screened for growth on human ascites, anex vivomedium that reflects the infection environment. A subset of 34 mutants with unique gene disruptions that demonstrated little to no growth on ascites underwent evaluation in a rat subcutaneous abscess model, establishing 18 (53%) of these genes asin vivoessential. The putative gene products all had annotated biological functions, represented unrecognized or underexploited antimicrobial targets, and could be grouped into five functional categories: metabolic, two-component signaling systems, DNA/RNA synthesis and regulation, protein transport, and structural. TheseA. baumannii in vivoessential genes overlapped poorly with the sets of essential genes from other Gram-negative bacteria catalogued in the Database of Essential Genes (DEG), including those ofAcinetobacter baylyi, a closely related species. However, this finding was not due to the absence of orthologs. None of the 18in vivoessential genes identified in this study, or their putative gene products, were targets of FDA-approved drugs or drugs in the developmental pipeline, indicating that a significant portion of the available target space within pathogenic Gram-negative bacteria is currently neglected.IMPORTANCEThe human pathogenAcinetobacter baumanniiis of increasing clinical importance, and a growing proportion of isolates are multiantimicrobial-resistant, pan-antimicrobial-resistant, or extremely resistant strains. This scenario is reflective of the general problem of a critical lack of antimicrobials effective against antimicrobial-resistant Gram-negative bacteria, such asPseudomonas aeruginosa,Klebsiella pneumoniae,Enterobactersp., andEscherichia coli. This study identified a set ofA. baumanniigenes that are essential for growth and survival during infection and demonstrated the importance of using clinically relevant media andin vivovalidation while screening for essential genes for the purpose of developing new antimicrobials. Furthermore, it established that if a gene is absent from the Database of Essential Genes, it should not be excluded as a potential antimicrobial target. Lastly, a new set of high-value potential antimicrobial targets for pathogenic Gram-negative bacteria has been identified.


2016 ◽  
Vol 80 (3) ◽  
pp. 891-903 ◽  
Author(s):  
Minh Thu Nguyen ◽  
Friedrich Götz

SUMMARYSince the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) inEscherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylumFirmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.


2020 ◽  
Vol 202 (17) ◽  
Author(s):  
Federico M. Ruiz ◽  
Juvenal Lopez ◽  
C. Gastón Ferrara ◽  
Elena Santillana ◽  
Yanis R. Espinosa ◽  
...  

ABSTRACT The type VI secretion system (T6SS) is a complex molecular nanomachine used by Gram-negative bacteria to deliver diverse effectors into adjacent cells. A membrane complex (MC) anchors this transport system to the bacterial cell wall. One of the proteins forming the MC is TssL, a cytoplasmic protein bound to the inner membrane through a single transmembrane helix. Here, we report the structure of the cytoplasmic N-terminal region of TssL from Acinetobacter baumannii, a bacterium encoding in a single locus a secretion system that is a special case among other T6SSs. The protein structure, consisting of two antiparallel alpha-helical bundles connected by a short loop, reveals several interesting particularities compared with homologous proteins from other organisms. In addition, we demonstrate the structural significance of residues Asp98 and Glu99, which are strongly conserved among T6SS-encoding Gram-negative bacteria. Mutations in these two residues strongly impact protein dynamics, expression, and functionality. Our results improve our understanding of the T6SS of A. baumannii, which remains largely understudied compared with that of other pathogens. IMPORTANCE Several Acinetobacter species carry one functional type VI secretion system (T6SS). The T6SS is encoded in a single locus containing 16 conserved genes, most of which code for proteins essential to T6SS activity. One of these key components is TssL, a cytoplasmic protein bound to the inner membrane. Despite its importance and its particular characteristics, the structure of T6SS in A. baumannii remains understudied. Here, we present structural, in silico, and in vivo studies of TssL, highlighting the importance of two well-conserved residues and improving our understanding of this secretion system in this bacterium.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Michael R. Jacobs ◽  
Ayman M. Abdelhamed ◽  
Caryn E. Good ◽  
Daniel D. Rhoads ◽  
Kristine M. Hujer ◽  
...  

ABSTRACT The activity of the siderophore cephalosporin cefiderocol is targeted against carbapenem-resistant Gram-negative bacteria. In this study, the activity of cefiderocol against characterized carbapenem-resistant Acinetobacter baumannii complex, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and Enterobacteriaceae strains was determined by microdilution in iron-depleted Mueller-Hinton broth. The MIC90s against A. baumannii, S. maltophilia, and P. aeruginosa were 1, 0.25, and 0.5 mg/liter, respectively. Against Enterobacteriaceae, the MIC90 was 1 mg/liter for the group harboring OXA-48-like, 2 mg/liter for the group harboring KPC-3, and 8 mg/liter for the group harboring TEM/SHV ESBL, NDM, and KPC-2.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
John Osei Sekyere ◽  
Melese Abate Reta

ABSTRACT Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including blaTEM-1, blaCTX-M, blaNDM, blaIMP, blaVIM, and blaOXA-48/181), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX3/4, ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited. IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance.


Sign in / Sign up

Export Citation Format

Share Document