scholarly journals Tamm-Horsfall Protein Protects the Urinary Tract againstCandida albicans

2018 ◽  
Vol 86 (12) ◽  
Author(s):  
Alison Coady ◽  
Anissa R. Ramos ◽  
Joshua Olson ◽  
Victor Nizet ◽  
Kathryn A. Patras

ABSTRACTUrinary tract infections (UTIs) caused by the human fungal pathogenCandida albicansand related species are prevalent in hospitalized patients, especially those on antibiotic therapy, with indwelling catheters, or with predisposing conditions such as diabetes or immunodeficiency. Understanding of key host defenses againstCandidaUTI is critical for developing effective treatment strategies. Tamm-Horsfall glycoprotein (THP) is the most abundant urine protein, with multiple roles in renal physiology and bladder protection. THP protects against bacterial UTI by blocking bacterial adherence to the bladder epithelium, but its role in defense against fungal pathogens is not yet described. Here we demonstrate that THP restricts colonization of the urinary tract byC. albicans. THP binds toC. albicanshyphae, but not the yeast form, in a manner dependent on fungal expression of the Als3 adhesion glycoprotein. THP directly blocksC. albicansadherence to bladder epithelial cellsin vitro, and THP-deficient mice display increased fungal burden in aC. albicansUTI model. This work outlines a previously unknown role for THP as an essential component for host immune defense against fungal urinary tract infection.

2014 ◽  
Vol 82 (5) ◽  
pp. 2048-2058 ◽  
Author(s):  
Stephanie J. Cole ◽  
Angela R. Records ◽  
Mona W. Orr ◽  
Sara B. Linden ◽  
Vincent T. Lee

ABSTRACTPseudomonas aeruginosais an opportunistic human pathogen that is especially adept at forming surface-associated biofilms.P. aeruginosacauses catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters.P. aeruginosaencodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilmsin vitro; however, the requirement of these polysaccharides duringin vivoinfections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboringpel,psl, andalggenes, and PA14, a strain harboringpelandalggenes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide duringin vivobiofilm infections, we tested isogenic mutants lacking thepel,psl, andalgoperons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelDmutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelDmutant. By testing the major constituents of urine, we show that urea can induce apel-,psl-, andalg-independent biofilm. Thesepel-,psl-, andalg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogenP. aeruginosautilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI.


2020 ◽  
Vol 202 (20) ◽  
Author(s):  
Eric C. DiBiasio ◽  
Hilary J. Ranson ◽  
James R. Johnson ◽  
David C. Rowley ◽  
Paul S. Cohen ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
C. Colomer-Winter ◽  
A. L. Flores-Mireles ◽  
S. Kundra ◽  
S. J. Hultgren ◽  
J. A. Lemos

ABSTRACT In Firmicutes, the nutrient-sensing regulators (p)ppGpp, the effector molecule of the stringent response, and CodY work in tandem to maintain bacterial fitness during infection. Here, we tested (p)ppGpp and codY mutant strains of Enterococcus faecalis in a catheter-associated urinary tract infection (CAUTI) mouse model and used global transcriptional analysis to investigate the relationship of (p)ppGpp and CodY. The absence of (p)ppGpp or single inactivation of codY led to lower bacterial loads in catheterized bladders and diminished biofilm formation on fibrinogen-coated surfaces under in vitro and in vivo conditions. Single inactivation of the bifunctional (p)ppGpp synthetase/hydrolase rel did not affect virulence, supporting previous evidence that the association of (p)ppGpp with enterococcal virulence is not dependent on the activation of the stringent response. Inactivation of codY in the (p)ppGpp0 strain restored E. faecalis virulence in the CAUTI model as well as the ability to form biofilms in vitro. Transcriptome analysis revealed that inactivation of codY restores, for the most part, the dysregulated metabolism of (p)ppGpp0 cells. While a clear linkage between (p)ppGpp and CodY with expression of virulence factors could not be established, targeted transcriptional analysis indicates that a possible association between (p)ppGpp and c-di-AMP signaling pathways in response to the conditions found in the bladder may play a role in enterococcal CAUTI. Collectively, data from this study identify the (p)ppGpp-CodY network as an important contributor to enterococcal virulence in catheterized mouse bladder and support that basal (p)ppGpp pools and CodY promote virulence through maintenance of a balanced metabolism under adverse conditions. IMPORTANCE Catheter-associated urinary tract infections (CAUTIs) are one of the most frequent types of infection found in the hospital setting that can develop into serious and potentially fatal bloodstream infections. One of the infectious agents that frequently causes complicated CAUTI is the bacterium Enterococcus faecalis, a leading cause of hospital-acquired infections that are often difficult to treat due to the exceptional multidrug resistance of some isolates. Understanding the mechanisms by which E. faecalis causes CAUTI will aid in the discovery of new druggable targets to treat these infections. In this study, we report the importance of two nutrient-sensing bacterial regulators, named (p)ppGpp and CodY, for the ability of E. faecalis to infect the catheterized bladder of mice.


2014 ◽  
Vol 82 (9) ◽  
pp. 3644-3656 ◽  
Author(s):  
Michael D. Engstrom ◽  
Christopher J. Alteri ◽  
Harry L. T. Mobley

ABSTRACTA heterogeneous subset of extraintestinal pathogenicEscherichia coli(ExPEC) strains, referred to as uropathogenicE. coli(UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associatedtosoperon is well expressedin vivobut poorly expressedin vitroand encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulatetosAand affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion oftosRalleviatestosArepression. Thetospromoter was localized upstream oftosRusing transcriptional fusions of putative promoter regions withlacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream oftosRinhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression offliC, encoding flagellin. Deletion oftosEFincreased motility. Thus, we present an additional example of the reciprocal control of adherence and motility.


2016 ◽  
Vol 84 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Michael D. Engstrom ◽  
Harry L. T. Mobley

Urinary tract infections (UTIs) are a major burden to human health. The overwhelming majority of UTIs are caused by uropathogenicEscherichia coli(UPEC) strains. Unlike some pathogens, UPEC strains do not have a fixed core set of virulence and fitness factors but do have a variety of adhesins and regulatory pathways. One such UPEC adhesin is the nonfimbrial adhesin TosA, which mediates adherence to the epithelium of the upper urinary tract. Thetosoperon is AT rich, resides on pathogenicity islandaspV, and is not expressed under laboratory conditions. Because of this, we hypothesized thattosAexpression is silenced by H-NS. Lrp, based on its prominent function in the regulation of other adhesins, is also hypothesized to contribute totosoperon regulation. Using a variety ofin vitrotechniques, we mapped both thetosoperon promoter and TosR binding sites. We have now identified TosR as a dual regulator of thetosoperon, which could control thetosoperon in association with H-NS and Lrp. H-NS is a negative regulator of thetosoperon, and Lrp positively regulates thetosoperon. Exogenous leucine also inhibits Lrp-mediatedtosoperon positive regulation. In addition, TosR binds to thepapoperon, which encodes another important UPEC adhesin, P fimbria. Induction of TosR synthesis reduces production of P fimbria. These studies advance our knowledge of regulation of adhesin expression associated with uropathogen colonization of a host.


2008 ◽  
Vol 57 (9) ◽  
pp. 1068-1078 ◽  
Author(s):  
Stephanie D. Himpsl ◽  
C. Virginia Lockatell ◽  
J. Richard Hebel ◽  
David E. Johnson ◽  
Harry L. T. Mobley

The Gram-negative bacterium Proteus mirabilis causes urinary tract infections (UTIs) in individuals with long-term indwelling catheters or those with functional or structural abnormalities of the urinary tract. Known virulence factors include urease, haemolysin, fimbriae, flagella, DsbA, a phosphate transporter and genes involved in cell-wall synthesis and metabolism, many of which have been identified using the technique of signature-tagged mutagenesis (STM). To identify additional virulence determinants and to increase the theoretical coverage of the genome, this study generated and assessed 1880 P. mirabilis strain HI4320 mutants using this method. Mutants with disruptions in genes vital for colonization of the CBA mouse model of ascending UTI were identified after performing primary and secondary in vivo screens in approximately 315 CBA mice, primary and secondary in vitro screens in both Luria broth and minimal A medium to eliminate mutants with minor growth deficiencies, and co-challenge competition experiments in approximately 500 CBA mice. After completion of in vivo screening, a total of 217 transposon mutants were attenuated in the CBA mouse model of ascending UTI. Following in vitro screening, this number was reduced to 196 transposon mutants with a probable role in virulence. Co-challenge competition experiments confirmed significant attenuation for 37 of the 93 transposon mutants tested, being outcompeted by wild-type HI4320. Following sequence analysis of the 37 mutants, transposon insertions were identified in genes including the peptidyl-prolyl isomerases surA and ppiA, glycosyltransferase cpsF, biopolymer transport protein exbD, transcriptional regulator nhaR, one putative fimbrial protein, flagellar M-ring protein fliF and hook protein flgE, and multiple metabolic genes.


2012 ◽  
Vol 56 (11) ◽  
pp. 5744-5748 ◽  
Author(s):  
Elizabeth A. Neuner ◽  
Jennifer Sekeres ◽  
Gerri S. Hall ◽  
David van Duin

ABSTRACTFosfomycin has shown promisingin vitroactivity against multidrug-resistant (MDR) urinary pathogens; however, clinical data are lacking. We conducted a retrospective chart review to describe the microbiological and clinical outcomes of urinary tract infections (UTIs) with MDR pathogens treated with fosfomycin tromethamine. Charts for 41 hospitalized patients with a urine culture for an MDR pathogen who received fosfomycin tromethamine from 2006 to 2010 were reviewed. Forty-one patients had 44 urinary pathogens, including 13 carbapenem-resistantKlebsiella pneumoniae(CR-Kp), 8Pseudomonas aeruginosa, and 7 vancomycin-resistantEnterococcus faecium(VRE) isolates, 7 extended-spectrum beta-lactamase (ESBL) producers, and 9 others.In vitrofosfomycin susceptibility was 86% (median MIC, 16 μg/ml; range, 0.25 to 1,024 μg/ml). Patients received an average of 2.9 fosfomycin doses per treatment course. The overall microbiological cure was 59%; failure was due to either relapse (24%) or reinfection UTI (17%). Microbiological cure rates by pathogen were 46% for CR-Kp, 38% forP. aeruginosa, 71% for VRE, 57% for ESBL producers, and 100% for others. Microbiological cure (n= 24) was compared to microbiological failure (n= 17). There were significantly more solid organ transplant recipients in the microbiological failure group (59% versus 21%;P= 0.02). None of the patients in the microbiological cure group had a ureteral stent, compared to 24% of patients within the microbiological failure group (P= 0.02). Fosfomycin demonstratedin vitroactivity against UTIs due to MDR pathogens. For CR-KP, there was a divergence betweenin vitrosusceptibility (92%) and microbiological cure (46%). Multiple confounding factors may have contributed to microbiological failures, and further data regarding the use of fosfomycin for UTIs due to MDR pathogens are needed.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Iain J. Abbott ◽  
Elke van Gorp ◽  
Aart van der Meijden ◽  
Rixt A. Wijma ◽  
Joseph Meletiadis ◽  
...  

ABSTRACT There are limited treatment options for enterococcal urinary tract infections, especially vancomycin-resistant Enterococcus (VRE). Oral fosfomycin is a potential option, although limited data are available guiding dosing and susceptibility. We undertook pharmacodynamic profiling of fosfomycin against E. faecalis and E. faecium isolates using a dynamic in vitro bladder infection model. Eighty-four isolates underwent fosfomycin agar dilution susceptibility testing (E. faecalis MIC50/90 32/64 μg/ml; E. faecium MIC50/90 64/128 μg/ml). Sixteen isolates (including E. faecalis ATCC 29212 and E. faecium ATCC 35667) were chosen to reflect the MIC range and tested in the bladder infection model with synthetic human urine (SHU). Under drug-free conditions, E. faecium demonstrated greater growth restriction in SHU compared to E. faecalis (E. faecium maximal growth 5.8 ± 0.6 log10 CFU/ml; E. faecalis 8.0 ± 1.0 log10 CFU/ml). Isolates were exposed to high and low fosfomycin urinary concentrations after a single dose, and after two doses given over two days with low urinary concentration exposure. Simulated concentrations closely matched the target (bias 2.3%). E. faecalis isolates required greater fosfomycin exposure for 3 log10 kill from the starting inoculum compared with E. faecium. The ƒAUC0-72/MIC and ƒ%T > MIC0-72 for E. faecalis were 672 and 70%, compared to 216 and 51% for E. faecium, respectively. There was no rise in fosfomycin MIC postexposure. Two doses of fosfomycin with low urinary concentrations resulted in equivalent growth inhibition to a single dose with high urinary concentrations. With this urinary exposure, fosfomycin was effective in promoting suppression of regrowth (>3 log10 kill) in the majority of isolates.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Allyson E. Shea ◽  
Juan Marzoa ◽  
Stephanie D. Himpsl ◽  
Sara N. Smith ◽  
Lili Zhao ◽  
...  

ABSTRACT Urinary tract infections (UTI), the second most diagnosed infectious disease worldwide, are caused primarily by uropathogenic Escherichia coli (UPEC), placing a significant financial burden on the health care system. High-throughput transposon mutagenesis combined with genome-targeted sequencing is a powerful technique to interrogate genomes for fitness genes. Genome-wide analysis of E. coli requires random libraries of at least 50,000 mutants to achieve 99.99% saturation; however, the traditional murine model of ascending UTI does not permit testing of large mutant pools due to a bottleneck during infection. To address this, an E. coli CFT073 transposon mutant ordered library of 9,216 mutants was created and insertion sites were identified. A single transposon mutant was selected for each gene to assemble a condensed library consisting of 2,913 unique nonessential mutants. Using a modified UTI model in BALB/c mice, we identified 36 genes important for colonizing the bladder, including purB, yihE, and carB. Screening of the condensed library in vitro identified yigP and ubiG to be essential for growth in human urine. Additionally, we developed a novel quantitative PCR (qPCR) technique to identify genes with fitness defects within defined subgroups of related genes (e.g., genes encoding fimbriae, toxins, etc.) following UTI. The number of mutants within these subgroups circumvents bottleneck restriction and facilitates validation of multiple mutants to generate individual competitive indices. Collectively, this study investigates the bottleneck effects during UTI, provides two techniques for evading those effects that can be applied to other disease models, and contributes a genetic tool in prototype strain CFT073 to the field. IMPORTANCE Uropathogenic Escherichia coli strains cause most uncomplicated urinary tract infections (UTI), one of the most common infectious diseases worldwide. Random transposon mutagenesis techniques have been utilized to identify essential bacterial genes during infection; however, this has been met with limitations when applied to the murine UTI model. Conventional high-throughput transposon mutagenesis screens are not feasible because of inoculum size restrictions due to a bottleneck during infection. Our study utilizes a condensed ordered transposon library, limiting the number of mutants while maintaining the largest possible genome coverage. Screening of this library in vivo, and in human urine in vitro, identified numerous candidate fitness factors. Additionally, we have developed a novel technique using qPCR to quantify bacterial outputs following infection with small subgroups of transposon mutants. Molecular approaches developed in this study will serve as useful tools to probe in vivo models that are restricted by anatomical, physiological, or genetic bottleneck limitations.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Gregory G. Stone ◽  
Patricia A. Bradford ◽  
Paul Newell ◽  
Angela Wardman

ABSTRACT The in vitro activity of ceftazidime-avibactam was evaluated against 341 Gram-negative isolates from 333 patients in a randomized, phase 3 clinical trial of patients with complicated urinary tract or intra-abdominal infections caused by ceftazidime-nonsusceptible pathogens (NCT01644643). Ceftazidime-avibactam MIC90 values against Enterobacteriaceae and Pseudomonas aeruginosa (including several class B or D enzyme producers that avibactam does not inhibit) were 1 and 64 μg/ml, respectively. Overall, the ceftazidime-avibactam activity against ceftazidime-nonsusceptible isolates was comparable to the activity of ceftazidime-avibactam previously reported against ceftazidime-susceptible isolates. (This study has been registered at ClinicalTrials.gov under identifier NCT01644643.)


Sign in / Sign up

Export Citation Format

Share Document