scholarly journals Adaptive Strategies and Pathogenesis of Clostridium difficile fromIn VivoTranscriptomics

2013 ◽  
Vol 81 (10) ◽  
pp. 3757-3769 ◽  
Author(s):  
Claire Janoir ◽  
Cécile Denève ◽  
Sylvie Bouttier ◽  
Frédéric Barbut ◽  
Sandra Hoys ◽  
...  

ABSTRACTClostridium difficileis currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge ofC. difficile-host interactions, we analyzed the genome-wide temporal expression ofC. difficile630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulatedin vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of theC. difficile-monoassociated mice, 549 genes of theC. difficilegenome were differentially expressed compared to their expression duringin vitrogrowth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulatedin vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulatedin vivo. Moreover, genes for all stages of sporulation were quickly inducedin vivo, highlighting the observation that sporulation is central to the persistence ofC. difficilein the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressedin vivoand evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that thein vivotranscriptomic approach can unravel newC. difficilevirulence genes.

2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


2012 ◽  
Vol 78 (21) ◽  
pp. 7662-7670 ◽  
Author(s):  
Mathieu Meessen-Pinard ◽  
Ognjen Sekulovic ◽  
Louis-Charles Fortier

ABSTRACTProphages contribute to the evolution and virulence of most bacterial pathogens, but their role inClostridium difficileis unclear. Here we describe the isolation of fourMyoviridaephages, ϕMMP01, ϕMMP02, ϕMMP03, and ϕMMP04, that were recovered as free viral particles in the filter-sterilized stool supernatants of patients suffering fromC. difficileinfection (CDI). Furthermore, identical prophages were found in the chromosomes ofC. difficileisolated from the corresponding fecal samples. We therefore provide, for the first time, evidence ofin vivoprophage induction during CDI. We completely sequenced the genomes of ϕMMP02 and ϕMMP04, and bioinformatics analyses did not reveal the presence of virulence factors but underlined the unique character of ϕMMP04. We also studied the mobility of ϕMMP02 and ϕMMP04 prophagesin vitro. Both prophages were spontaneously induced, with 4 to 5 log PFU/ml detected in the culture supernatants of the corresponding lysogens. When lysogens were grown in the presence of subinhibitory concentrations of ciprofloxacin, moxifloxacin, levofloxacin, or mitomycin C, the phage titers further increased, reaching 8 to 9 log PFU/ml in the case of ϕMMP04. In summary, our study highlights the extensive genetic diversity and mobility ofC. difficileprophages. Moreover, antibiotics known to represent risk factors for CDI, such as quinolones, can stimulate prophage mobilityin vitroand probablyin vivoas well, which underscores their potential impact on phage-mediated horizontal gene transfer events and the evolution ofC. difficile.


2014 ◽  
Vol 82 (10) ◽  
pp. 4222-4232 ◽  
Author(s):  
Dennis Bakker ◽  
Anthony M. Buckley ◽  
Anne de Jong ◽  
Vincent J. C. van Winden ◽  
Joost P. A. Verhoeks ◽  
...  

ABSTRACTIn the past decade,Clostridium difficilehas emerged as an important gut pathogen. Symptoms ofC. difficileinfection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that theC. difficile630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its rolein vivoandin vitrothrough the creation of an isogenic ClosTron-basedhtrAmutant ofC. difficilestrain 630Δerm(wild type). In contrast to the attenuated phenotype seen withhtrAdeletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acuteC. difficileinfection. Microarray data analysis showed a pleiotropic effect ofhtrAon the transcriptome ofC. difficile, including upregulation of the toxin A gene. In addition,the htrAmutant showed reduced spore formation and adherence to colonic cells. Together, our data show thathtrAcan modulate virulence inC. difficile.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Ummehan Avican ◽  
Tugrul Doruk ◽  
Yngve Östberg ◽  
Anna Fahlgren ◽  
Åke Forsberg

ABSTRACT The twin arginine translocation (Tat) system targets folded proteins across the inner membrane and is crucial for virulence in many important human-pathogenic bacteria. Tat has been shown to be required for the virulence of Yersinia pseudotuberculosis, and we recently showed that the system is critical for different virulence-related stress responses as well as for iron uptake. In this study, we wanted to address the role of the Tat substrates in in vivo virulence. Therefore, 22 genes encoding potential Tat substrates were mutated, and each mutant was evaluated in a competitive oral infection of mice. Interestingly, a ΔsufI mutant was essentially as attenuated for virulence as the Tat-deficient strain. We also verified that SufI was Tat dependent for membrane/periplasmic localization in Y. pseudotuberculosis. In vivo bioluminescent imaging of orally infected mice revealed that both the ΔsufI and ΔtatC mutants were able to colonize the cecum and Peyer's patches (PPs) and could spread to the mesenteric lymph nodes (MLNs). Importantly, at this point, neither the ΔtatC mutant nor the ΔsufI mutant was able to spread systemically, and they were gradually cleared. Immunostaining of MLNs revealed that both the ΔtatC and ΔsufI mutants were unable to spread from the initial infection foci and appeared to be contained by neutrophils, while wild-type bacteria readily spread to establish multiple foci from day 3 postinfection. Our results show that SufI alone is required for the establishment of systemic infection and is the major cause of the attenuation of the ΔtatC mutant.


2013 ◽  
Vol 62 (9) ◽  
pp. 1386-1393 ◽  
Author(s):  
Patrizia Spigaglia ◽  
Amira Barketi-Klai ◽  
Anne Collignon ◽  
Paola Mastrantonio ◽  
Fabrizio Barbanti ◽  
...  

Clostridium difficile is a frequent cause of severe, recurrent post-antibiotic diarrhoea and pseudomembranous colitis. The surface layer (S-layer) is the predominant outer surface component of C. difficile which is involved in pathogen–host interactions critical to pathogenesis. In this study, we characterized the S-layer protein A (SlpA) of animal and human strains belonging to different PCR-ribotypes (PR) and compared the in vitro adherence and in vivo colonization properties of strains showing different SlpA variants. Since each SlpA variant has been recently associated with an S-layer cassette, we were able to deduce the cassette for each of our strains. In this study, an identity of 99–100 % was found among the SlpA of isolates belonging to PR 012, 014/020, 045 and 078. One exception was the SlpA of a poultry isolate, PR 014/020, which showed 99 % identity with that of strain 0160, another PR 014/020 which contains an S-layer cassette 6. Interestingly, this cassette has also been found in a PR 018 strain, an emerging virulent type currently predominant in Italy. Five other SlpA variants (v014/020a–e) were identified in strains PR 014/020. In vitro adherence assays and in vivo colonization experiments were performed on five PR 014/020 strains: human 1064 (v014/020e), human 4684/08 (v014/020b), human IT1106 (v078a), poultry P30 (v014/020d) and poultry PB90 (v014/020b) strains. Adhesion assays indicate that C. difficile strains vary in their capacity to adhere to cells in culture and that adhesion seems to be independent of the SlpA variant. Colonization properties were assessed in vivo using a dixenic mouse model of colonization. The kinetics of faecal shedding and caecal colonization were similar when human 4684/08 (v014/020b) strain was compared with human 1064 (v014/020e) and poultry PB90 (v014/020b) strain. In contrast, poultry P30 (v014/020d) strain outcompeted both human 4684/08 (v014/020b) and IT1106 (v078a) strains and its adherence to caeca at day 7 was significantly higher. The peculiar characteristics of C. difficile P30 seem to advantage it in colonizing the intestinal mice niche, increasing its ability to compete and adapt. The results obtained underline the need of an increased attention to the genetic evolution of C. difficile to prevent and limit the consequences of the emergence of increasingly virulent strains.


2015 ◽  
Vol 83 (4) ◽  
pp. 1384-1395 ◽  
Author(s):  
Aimee Tan ◽  
Nicola K. Petty ◽  
Dianna Hocking ◽  
Vicki Bennett-Wood ◽  
Matthew Wakefield ◽  
...  

The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogenCitrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and thegrlRAoperon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genusEscherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated thatregAhas been horizontally transferred toEscherichiaspp. andC. rodentium. Comparative studies of two RegA homologues, namely, those fromC. rodentiumandE. coliSMS-3-5, a multiresistant environmental strain ofE. coli, showed that the two regulators acted similarlyin vitrobut differed in terms of their abilities to activate the virulence ofC. rodentiumin vivo, which evidently was due to their differential activation ofgrlRA. Our data indicate that RegA fromC. rodentiumhas strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence byC. rodentiumand on the evolution of virulence-regulatory genes of bacterial pathogens in general.


2012 ◽  
Vol 11 (8) ◽  
pp. 1012-1020 ◽  
Author(s):  
Alessandro Fiori ◽  
Soňa Kucharíková ◽  
Gilmer Govaert ◽  
Bruno P. A. Cammue ◽  
Karin Thevissen ◽  
...  

ABSTRACT The consequences of deprivation of the molecular chaperone Hsp104 in the fungal pathogen Candida albicans were investigated. Mutants lacking HSP104 became hypersusceptible to lethally high temperatures, similarly to the corresponding mutants of Saccharomyces cerevisiae , whereas normal susceptibility was restored upon reintroduction of the gene. By use of a strain whose only copy of HSP104 is an ectopic gene under the control of a tetracycline-regulated promoter, expression of Hsp104 prior to the administration of heat shock could be demonstrated to be sufficient to confer protection from the subsequent temperature increase. This result points to a key role for Hsp104 in orchestrating the cell response to elevated temperatures. Despite their not showing evident growth or morphological defects, biofilm formation by cells lacking HSP104 proved to be defective in two established in vitro models that use polystyrene and polyurethane as the substrates. Biofilms formed by the wild-type and HSP104 -reconstituted strains showed patterns of intertwined hyphae in the extracellular matrix. In contrast, biofilm formed by the hsp104 Δ/ hsp104 Δ mutant showed structural defects and appeared patchy and loose. Decreased virulence of the hsp104 Δ/ hsp104 Δ mutant was observed in the Caenorhabditis elegans infection model, in which high in vivo temperature does not play a role. In agreement with the view that stress responses in fungal pathogens may have evolved to provide niche-specific adaptation to environmental conditions, these results provide an indication of a temperature-independent role for Hsp104 in support of Candida albicans virulence, in addition to its key role in governing thermotolerance.


2014 ◽  
Vol 83 (2) ◽  
pp. 502-513 ◽  
Author(s):  
Shan Li ◽  
Lianfa Shi ◽  
Zhiyong Yang ◽  
Yongrong Zhang ◽  
Gregorio Perez-Cordon ◽  
...  

TcdB is one of the key virulence factors ofClostridium difficilethat is responsible for causing serious and potentially fatal colitis. The toxin contains at least two enzymatic domains: an effector glucosyltransferase domain for inactivating host Rho GTPases and a cysteine protease domain for the delivery of the effector domain into host cytosol. Here, we describe a novel intrabody approach to examine the role of these enzymes of TcdB in cellular intoxication. By screening a single-domain heavy chain (VHH) library raised against TcdB, we identified two VHH antibodies, 7F and E3, that specifically inhibit TcdB cysteine protease and glucosyltransferase activities, respectively. Cytoplasmic expression of 7F intrabody in Vero cells inhibited TcdB autoprocessing and delayed cellular intoxication, whereas E3 intrabody completely blocked the cytopathic effects of TcdB holotoxin. These data also demonstrate for the first time that toxin autoprocessing occurs after cysteine protease and glucosyltransferase domains translocate into the cytosol of target cells. We further determined the role of the enzymatic activities of TcdB inin vivotoxicity using a sensitive systemic challenge model in mice. Consistent with thesein vitroresults, a cysteine protease noncleavable mutant, TcdB-L543A, delayed toxicity in mice, whereas glycosyltransferase-deficient TcdB demonstrated no toxicity up to 500-fold of the 50% lethal dose (LD50) when it was injected systemically. Thus, glucosyltransferase but not cysteine protease activity is critical for TcdB-mediated cytopathic effects and TcdB systemic toxicity, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


2016 ◽  
Vol 84 (5) ◽  
pp. 1514-1525 ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Xinjun Zhang ◽  
Beth Baker ◽  
Kate R. Fortney ◽  
Hongyu Gao ◽  
...  

Haemophilus ducreyicauses the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans,H. ducreyiresides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014,http://dx.doi.org/10.1128/mBio.01081-13) suggested thatH. ducreyiencounters growth conditions in human lesions resembling those found in stationary phase. However, howH. ducreyitranscriptionally responds to stress during human infection is unknown. Here, we determined theH. ducreyitranscriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that thein vivotranscriptome is distinct from those ofin vitrogrowth. Compared to the inoculum (mid-log-phase bacteria),H. ducreyiharvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis.H. ducreyiupregulated few genes (hgbA,flp-tad, andlspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressedin vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that thein vivotranscriptome is distinct from those ofin vitrogrowth and that adaptation to nutrient stress and anaerobiosis is crucial forH. ducreyisurvival in humans.


2018 ◽  
Vol 86 (3) ◽  
pp. e00798-17 ◽  
Author(s):  
Lana Dbeibo ◽  
Julia J. van Rensburg ◽  
Sara N. Smith ◽  
Kate R. Fortney ◽  
Dharanesh Gangaiah ◽  
...  

ABSTRACTCpxRA is an envelope stress response system found in all members of the familyEnterobacteriaceae; CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR, a transcription factor. CpxR also accepts phosphate groups from acetyl phosphate, a glucose metabolite. Activation of CpxR increases the transcription of genes encoding membrane repair and downregulates virulence determinants. We hypothesized that activation of CpxR could serve as an antimicrobial/antivirulence strategy and discovered compounds that activate CpxR inEscherichia coliby inhibiting CpxA phosphatase activity. As a prelude to testing such compoundsin vivo, here we constructedcpxA(in the presence of glucose, CpxR is activated because of a lack of CpxA phosphatase) andcpxR(system absent) deletion mutants of uropathogenicE. coli(UPEC) CFT073. By RNA sequencing, few transcriptional differences were noted between thecpxRmutant and its parent, but in thecpxAmutant, several UPEC virulence determinants were downregulated, including thefimandpapoperons, and it exhibited reduced mannose-sensitive hemagglutination of guinea pig red blood cellsin vitro. In competition experiments with mice, both mutants were less fit than the parent in the urine, bladder, and kidney; these fitness defects were complemented intrans. Unexpectedly, in single-strain challenges, only thecpxAmutant was attenuated for virulence in the kidney but not in the bladder or urine. For thecpxAmutant, this may be due to the preferential use of amino acids over glucose as a carbon source in the bladder and urine by UPEC. These studies suggest that CpxA phosphatase inhibitors may have some utility for treating complex urinary tract infections.


Sign in / Sign up

Export Citation Format

Share Document