scholarly journals Loa loa Microfilariae Evade Complement Attack In Vivo by Acquiring Regulatory Proteins from Host Plasma

2009 ◽  
Vol 77 (9) ◽  
pp. 3886-3893 ◽  
Author(s):  
Karita Haapasalo ◽  
Taru Meri ◽  
T. Sakari Jokiranta

ABSTRACT Loa loa is a filarial nematode that infects humans. The adults live in subcutaneous tissues and produce microfilariae that live for several weeks in the blood circulation in order to be transmitted to another person via blood meals of a dipterian vector. As microfilariae live in continuous contact with plasma, it is obvious that they evade the complement system. We studied markers of complement activation and signs of complement regulation on Loa loa microfilariae in vivo. The microfilariae were isolated from anticoagulated blood samples of a Loa loa-infected Caucasian patient. C1q and some mannose-binding lectin but only a limited amount of C3b or C4b fragments and practically no C5 or C5b-9 were present on the microfilariae. The covalently microfilaria-bound C3 and C4 depositions were mainly inactive iC3b, C3c, and iC4b fragments indicating that microfilariae had regulated complement activation in vivo. Also, in vitro deposition of C3b onto the microfilariae upon serum exposure was limited. The patient-isolated microfilariae were found to carry the host complement regulators factor H and C4b-binding protein on the outermost layer, so called sheath. The microfilaria-bound factor H was functionally active. Binding of the complement regulators to the microfilariae was confirmed in vitro using 125I-labeled factor H and C4b-binding protein. In conclusion, our study shows that Loa loa microfilariae block complement activation and acquire the host complement regulators factor H and C4b-binding protein in blood circulation. This is the first time that binding of complement regulators onto nonviral pathogens has been demonstrated to occur in humans in vivo.

2006 ◽  
Vol 74 (7) ◽  
pp. 4157-4163 ◽  
Author(s):  
T. Meri ◽  
S. J. Cutler ◽  
A. M. Blom ◽  
S. Meri ◽  
T. S. Jokiranta

ABSTRACT Relapsing fever is a rapidly progressive and severe septic disease caused by certain Borrelia spirochetes. The disease is divided into two forms, i.e., epidemic relapsing fever, caused by Borrelia recurrentis and transmitted by lice, and the endemic form, caused by several Borrelia species, such as B. duttonii, and transmitted by soft-bodied ticks. The spirochetes enter the bloodstream by the vector bite and live persistently in plasma even after the development of specific antibodies. This leads to fever relapses and high mortality and clearly indicates that the Borrelia organisms utilize effective immune evasion strategies. In this study, we show that the epidemic relapsing fever pathogen B. recurrentis and an endemic relapsing fever pathogen, B. duttonii, are serum resistant, i.e., resistant to complement in vitro. They acquire the host alternative complement pathway regulator factor H on their surfaces in a similar way to that of the less serum-resistant Lyme disease pathogen, B. burgdorferi sensu stricto. More importantly, the relapsing fever spirochetes specifically bind host C4b-binding protein, a major regulator of the antibody-mediated classical complement pathway. Both complement regulators retained their functional activities when bound to the surfaces of the spirochetes. In conclusion, this is the first report of complement evasion by Borrelia recurrentis and B. duttonii and the first report showing capture of C4b-binding protein by spirochetes.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3436-3443 ◽  
Author(s):  
Yan Li ◽  
Feng Lin

Abstract Despite the potent immunosuppressive activity that mesenchymal stem cells (MSCs) display in vitro, recent clinical trial results are disappointing, suggesting that MSC viability and/or function are greatly reduced after infusion. In this report, we demonstrated that human MSCs activated complement of the innate immunity after their contact with serum. Although all 3 known intrinsic cell-surface complement regulators were present on MSCs, activated complement overwhelmed the protection of these regulators and resulted in MSCs cytotoxicity and dysfunction. In addition, autologous MSCs suffered less cellular injury than allogeneic MSCs after contacting serum. All 3 complement activation pathways were involved in generating the membrane attack complex to directly injure MSCs. Supplementing an exogenous complement inhibitor, or up-regulating MSC expression levels of CD55, one of the cell-surface complement regulators, helped to reduce the serum-induced MSC cytotoxicity. Finally, adoptively transferred MSCs in complement deficient mice or complement-depleted mice showed reduced cellular injury in vivo compared with those in wild type mice. These results indicate that complement is integrally involved in recognizing and injuring MSCs after their infusion, suggesting that autologous MSCs may have ad-vantages over allogeneic MSCs, and that inhibiting complement activation could be a novel strategy to improve existing MSC-based therapies.


2014 ◽  
Vol 82 (8) ◽  
pp. 3324-3332 ◽  
Author(s):  
Lindy M. Fine ◽  
Daniel P. Miller ◽  
Katherine L. Mallory ◽  
Brittney K. Tegels ◽  
Christopher G. Earnhart ◽  
...  

ABSTRACTThe primary causative agent of tick-borne relapsing fever in North America isBorrelia hermsii. It has been hypothesized thatB. hermsiievades complement-mediated destruction by binding factor H (FH), a host-derived negative regulator of complement.In vitro,B. hermsiiproduces a single FH binding protein designated FhbA (FH binding protein A). The properties and ligand binding activity of FhbA suggest that it plays multiple roles in pathogenesis. It binds plasminogen and has been identified as a significant target of a B1b B cell-mediated IgM response in mice. FhbA has also been explored as a potential diagnostic antigen forB. hermsiiinfection in humans. The ability to test the hypothesis that FhbA is a critical virulence factorin vivohas been hampered by the lack of well-developed systems for the genetic manipulation of the relapsing fever spirochetes. In this report, we have successfully generated aB. hermsiifhbAdeletion mutant (theB. hermsiiYORΔfhbAstrain) through allelic exchange mutagenesis. Deletion offhbAabolished FH binding by the YORΔfhbAstrain and eliminated cleavage of C3b on the cell surface. However, the YORΔfhbAstrain remained infectious in mice and retained resistance to killingin vitroby human complement. Collectively, these results indicate thatB. hermsiiemploys an FhbA/FH-independent mechanism of complement evasion that allows for resistance to killing by human complement and persistence in mice.


2008 ◽  
Vol 77 (2) ◽  
pp. 764-769 ◽  
Author(s):  
Dan M. Granoff ◽  
Jo Anne Welsch ◽  
Sanjay Ram

ABSTRACT Complement factor H (fH), a molecule that downregulates complement activation, binds to Neisseria meningitidis and increases resistance to serum bactericidal activity. We investigated the species specificity of fH binding and the effect of human fH on downregulating rat (relevant for animal models) and rabbit (relevant for vaccine evaluation) complement activation. Binding to N. meningitidis was specific for human fH (low for chimpanzee fH and not detected with fH from lower primates). The addition of human fH decreased rat and rabbit C3 deposition on the bacterial surface and decreased group C bactericidal titers measured with rabbit complement 10- to 60-fold in heat-inactivated sera from human vaccinees. Administration of human fH to infant rats challenged with group B strain H44/76 resulted in an fH dose-dependent increase in CFU/ml of bacteria in blood 8 h later (P < 0.02). At the highest fH dose, 50 μg/rat, the geometric mean number of CFU per ml was higher than that in control animals (1,050 versus 43 [P < 0.005]). The data underscore the importance of binding of human fH for survival of N. meningitidis in vitro and in vivo. The species specificity of binding of human fH adds another mechanism toward our understanding of why N. meningitidis is strictly a human pathogen.


Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


1998 ◽  
Vol 13 (3) ◽  
pp. 291-301 ◽  
Author(s):  
John H. Butler ◽  
Shiquan Hu ◽  
Shari R. Brady ◽  
Michael W. Dixon ◽  
Gloria K. Muday

2011 ◽  
Vol 286 (22) ◽  
pp. 19229-19236 ◽  
Author(s):  
Laura A. Lindsey-Boltz ◽  
Aziz Sancar

The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.


2012 ◽  
Vol 442 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Gráinne Barkess ◽  
Yuri Postnikov ◽  
Chrisanne D. Campos ◽  
Shivam Mishra ◽  
Gokula Mohan ◽  
...  

HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production.


1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


Sign in / Sign up

Export Citation Format

Share Document