scholarly journals Moraxella catarrhalis Expresses an Unusual Hfq Protein

2008 ◽  
Vol 76 (6) ◽  
pp. 2520-2530 ◽  
Author(s):  
Ahmed S. Attia ◽  
Jennifer L. Sedillo ◽  
Wei Wang ◽  
Wei Liu ◽  
Chad A. Brautigam ◽  
...  

ABSTRACT The Hfq protein is recognized as a global regulatory molecule that facilitates certain RNA-RNA interactions in bacteria. BLAST analysis identified a 630-nucleotide open reading frame in the genome of Moraxella catarrhalis ATCC 43617 that was highly conserved among M. catarrhalis strains and which encoded a predicted protein with significant homology to the Hfq protein of Escherichia coli. This protein, containing 210 amino acids, was more than twice as large as the Hfq proteins previously described for other bacteria. The C-terminal half of the M. catarrhalis Hfq protein was very hydrophilic and contained two different types of amino acid repeats. A mutation in the M. catarrhalis hfq gene affected both the growth rate of this organism and its sensitivity to at least two different types of stress in vitro. Provision of the wild-type M. catarrhalis hfq gene in trans eliminated these phenotypic differences in the hfq mutant. This M. catarrhalis hfq mutant exhibited altered expression of some cell envelope proteins relative to the wild-type parent strain and also had a growth advantage in a continuous flow biofilm system. The presence of the wild-type M. catarrhalis hfq gene in trans in an E. coli hfq mutant fully reversed the modest growth deficiency of this E. coli mutant and partially reversed the stress sensitivity of this E. coli mutant to methyl viologen. The use of an electrophoretic mobility shift assay showed that this M. catarrhalis Hfq protein could bind RNA derived from a gene whose expression was altered in the M. catarrhalis hfq mutant.

2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2005 ◽  
Vol 71 (7) ◽  
pp. 3468-3474 ◽  
Author(s):  
Gyeong Tae Eom ◽  
Jae Kwang Song ◽  
Jung Hoon Ahn ◽  
Yeon Soo Seo ◽  
Joon Shick Rhee

ABSTRACT The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Hiba Al-malliti

Objective: To determine the time needed for killing different types of microorganisms by a newly synthesized 2-mercapto-1,3-benzothiazole derivative in comparison to ciprofloxacin and fluconazole.Methods: The minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) for 2-{[4-(2,6-dimethylPiperidin-1-yl)but-2-yn-1-yl]Sulfanyl}-1,3-benzothiazole(AZ3) compound were determined, using the broth dilution method. The MBC and MFC dilutions were prepared. Broth cultures of Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) were incubated at 37 °C for 24 h, and Candida albicans (C. albicans) was incubated at 25 °C for 48 h. 0.1 ml of each broth culture represent 1.5 x 106 CFU/ml was challenged with 9.9 ml broth containing the MBC or MFC concentrations of the AZ3 compound. From each sample at different time intervals, 1 ml was taken and added to 9 ml of sterile distilled water, in order to neutralize the effect of AZ3. Serial dilution was done and a viable count was determined from the appropriate dilutions.Results: The viability of the P. aeruginosa, E. coli, S. aureus, B. subtilis and C. albicans were killed within 3.5 h, 5 h, 24 h, 3 h and 5 h respectively. The time killing curves showed that AZ3 needed longer time for killing S. aureus than the time needed to kill B. subtilis. On the other hand, AZ3 needed a shorter time to kill P. aeruginosa, than the time needed to kill E. coli. In comparison with ciprofloxacin, AZ3 needed a shorter time to kill P. aeruginosa and E. coli, and the same time to kill B. subtilis, while it needed longer time than ciprofloxacin to kill S. aureus. In comparison with fluconazole, AZ3 with lower MFC than fluconazole needed longer time to kill C. albicans.Conclusion: AZ3 showed promising antimicrobial killing activities, in compared with ciprofloxacin and fluconazole, which promoted our interest to investigate the time of killing needed for other 2-mercaptobenzothiazole derivatives against different types of microorganisms.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


2006 ◽  
Vol 50 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Daniel Criswell ◽  
Virginia L. Tobiason ◽  
J. Stephen Lodmell ◽  
D. Scott Samuels

ABSTRACT We have isolated and characterized in vitro mutants of the Lyme disease agent Borrelia burgdorferi that are resistant to spectinomycin, kanamycin, gentamicin, or streptomycin, antibiotics that target the small subunit of the ribosome. 16S rRNA mutations A1185G and C1186U, homologous to Escherichia coli nucleotides A1191 and C1192, conferred >2,200-fold and 1,300-fold resistance to spectinomycin, respectively. A 16S rRNA A1402G mutation, homologous to E. coli A1408, conferred >90-fold resistance to kanamycin and >240-fold resistance to gentamicin. Two mutations were identified in the gene for ribosomal protein S12, at a site homologous to E. coli residue Lys-87, in mutants selected in streptomycin. Substitutions at codon 88, K88R and K88E, conferred 7-fold resistance and 10-fold resistance, respectively, to streptomycin on B. burgdorferi. The 16S rRNA A1185G and C1186U mutations, associated with spectinomycin resistance, appeared in a population of B. burgdorferi parental strain B31 at a high frequency of 6 × 10−6. These spectinomycin-resistant mutants successfully competed with the wild-type strain during 100 generations of coculture in vitro. The aminoglycoside-resistant mutants appeared at a frequency of 3 × 10−9 to 1 ×10−7 in a population and were unable to compete with wild-type strain B31 after 100 generations. This is the first description of mutations in the B. burgdorferi ribosome that confer resistance to antibiotics. These results have implications for the evolution of antibiotic resistance, because the 16S rRNA mutations conferring spectinomycin resistance have no significant fitness cost in vitro, and for the development of new selectable markers.


2019 ◽  
Author(s):  
Zhen Wang ◽  
Junmei Kang ◽  
Shangang Jia ◽  
Tiejun Zhang ◽  
Zhihai Wu ◽  
...  

Abstract Background: Casein kinase 1 (CK1) family members are highly conserved serine/threonine kinase present in most eukaryotes with multiple biological functions. Arabidopsis MUT9-like kinases ( MLKs ) belong to a clade CK1 specific to the plant kingdom and have been implicated collectively in modulating flowering related processes. Three of the four MLKs ( MLK1/2/4 ) have been characterized, however, little is known about MLK3 , the most divergent MLKs. Results: We demonstrated that compared with wild type, mlk3 , a truncated MLK3 , flowered slightly early under long day conditions and ectopic expression of MLK3 rescued the morphological defects of mlk3 , indicating that MLK3 negatively regulates flowering. GA 3 application accelerated flowering of both wild type and mlk3 , suggesting that mlk3 had normal GA response. The recombinant MLK3-GFP was localized in the nucleus exclusively. In vitro kinase assay revealed that the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3ph). Mutation of a conserved catalytic residue (Lysine 175) abolished the kinase activity and resulted in failure to complement the early flowering phenotype of mlk3 . Interestingly, the global level of H3T3 phosphorylation in mlk3 did not differ significantly from wild type, suggesting the redundant roles of MLKs in flowering regulation. The transcriptomic analysis demonstrated that 425 genes significantly altered expression level in mlk3 relative to wild type. The mlk3 mlk4 double mutant generated by crossing mlk3 with mlk4 , a loss-of-function mutant of MLK4 showing late flowering, flowered between the two parental lines, suggesting that MLK3 played an antagonistic role to MLK4 in plant transition to flowering. Conclusions: A serine/threonine kinase encoding gene MLK3 is a casein kinase 1 specific to the plant species and represses flowering slightly. MLK3 located in nucleus catalyzes the phosphorylation of histone H3 at threonine 3 in vitro and an intact lysine residue (K175) is indispensible for the kinase activity. This study sheds new light on the delicate control of flowering by the plant-specific CK1 in Arabidopsis.


2019 ◽  
Vol 7 (3) ◽  
pp. 81 ◽  
Author(s):  
Nikolay Rovinskiy ◽  
Andrews Agbleke ◽  
Olga Chesnokova ◽  
N. Higgins

Prokaryotes have an essential gene—gyrase—that catalyzes negative supercoiling of plasmid and chromosomal DNA. Negative supercoils influence DNA replication, transcription, homologous recombination, site-specific recombination, genetic transposition and sister chromosome segregation. Although E. coli and Salmonella Typhimurium are close relatives with a conserved set of essential genes, E. coli DNA has a supercoil density 15% higher than Salmonella, and E. coli cannot grow at the supercoil density maintained by wild type (WT) Salmonella. E. coli is addicted to high supercoiling levels for efficient chromosomal folding. In vitro experiments were performed with four gyrase isoforms of the tetrameric enzyme (GyrA2:GyrB2). E. coli gyrase was more processive and faster than the Salmonella enzyme, but Salmonella strains with chromosomal swaps of E. coli GyrA lost 40% of the chromosomal supercoil density. Reciprocal experiments in E. coli showed chromosomal dysfunction for strains harboring Salmonella GyrA. One GyrA segment responsible for dis-regulation was uncovered by constructing and testing GyrA chimeras in vivo. The six pinwheel elements and the C-terminal 35–38 acidic residues of GyrA controlled WT chromosome-wide supercoiling density in both species. A model of enzyme processivity modulated by competition between DNA and the GyrA acidic tail for access to β-pinwheel elements is presented.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ehsan Zamani ◽  
Shyambo Chatterjee ◽  
Taity Changa ◽  
Cheryl Immethun ◽  
Anandakumar Sarella ◽  
...  

AbstractAn in-depth understanding of cell-drug binding modes and action mechanisms can potentially guide the future design of novel drugs and antimicrobial materials and help to combat antibiotic resistance. Light-harvesting π-conjugated molecules have been demonstrated for their antimicrobial effects, but their impact on bacterial outer cell envelope needs to be studied in detail. Here, we synthesized poly(phenylene) based model cationic conjugated oligo- (2QA-CCOE, 4QA-CCOE) and polyelectrolytes (CCPE), and systematically explored their interactions with the outer cell membrane of wild-type and ampicillin (amp)-resistant Gram-negative bacteria, Escherichia coli (E. coli). Incubation of the E. coli cells in CCOE/CCPE solution inhibited the subsequent bacterial growth in LB media. About 99% growth inhibition was achieved if amp-resistant E. coli was treated for ~3–5 min, 1 h and 6 h with 100 μM of CCPE, 4QA-CCOE, and 2QA-CCOE solutions, respectively. Interestingly, these CCPE and CCOEs inhibited the growth of both wild-type and amp-resistant E. coli to a similar extent. A large surface charge reversal of bacteria upon treatment with CCPE suggested the formation of a coating of CCPE on the outer surface of bacteria; while a low reversal of bacterial surface charge suggested intercalation of CCOEs within the lipid bilayer of bacteria.


1992 ◽  
Vol 285 (3) ◽  
pp. 947-955 ◽  
Author(s):  
J E Rixon ◽  
L M A Ferreira ◽  
A J Durrant ◽  
J I Laurie ◽  
G P Hazlewood ◽  
...  

A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA constructed in pUC18 and expressed in Escherichia coli was screened for recombinants expressing 4-methylumbelliferyl beta-D-glucoside hydrolysing activity (MUGase). A single MUGase-positive clone was isolated. The MUGase hydrolysed cellobiose, cellotriose, cellotetraose, cellopentaose and cellohexaose to glucose, by sequentially cleaving glucose residues from the non-reducing end of the cello-oligosaccharides. The Km values for cellobiose and cellohexaose hydrolysis were 1.2 mM and 28 microM respectively. The enzyme exhibited no activity against soluble or insoluble cellulose, xylan and xylobiose. Thus the MUGase is classified as a 1,4-beta-D-glucan glucohydrolase (EC 3.2.1.74) and is designated 1,4-beta-D-glucan glucohydrolase D (CELD). When expressed by E. coli, CELD was located in the cell-envelope fraction; a significant proportion of the native enzyme was also associated with the cell envelope when synthesized by its endogenous host. The nucleotide sequence of the gene, celD, which encodes CELD, revealed an open reading frame of 2607 bp, encoding a protein of M(r) 92,000. The deduced primary structure of CELD was confirmed by the M(r) of CELD (85,000) expressed by E. coli and P. fluorescens subsp. cellulosa, and by the experimentally determined N-terminus of the enzyme purified from E. coli, which showed identity with residues 52-67 of the celD translated sequence. The structure of the N-terminal region of full-length CELD was similar to the signal peptides of P. fluorescens subsp. cellulosa plant-cell-wall hydrolases. Deletion of the N-terminal 47 residues of CELD solubilized MUGase activity in E. coli. CELD exhibited sequence similarity with beta-glucosidase B of Clostridium thermocellum, particularly in the vicinity of the active-site aspartate residue, but did not display structural similarity with the mature forms of cellulases and xylanases expressed by P. fluorescens subsp. cellulosa.


Sign in / Sign up

Export Citation Format

Share Document