scholarly journals Pleiotropic Effects of Cell Wall Amidase LytA on Streptococcus pneumoniae Sensitivity to the Host Immune Response

2014 ◽  
Vol 83 (2) ◽  
pp. 591-603 ◽  
Author(s):  
Elisa Ramos-Sevillano ◽  
Ana Urzainqui ◽  
Susana Campuzano ◽  
Miriam Moscoso ◽  
Fernando González-Camacho ◽  
...  

The complement system is a key component of the host immune response for the recognition and clearance ofStreptococcus pneumoniae. In this study, we demonstrate that the amidase LytA, the main pneumococcal autolysin, inhibits complement-mediated immunity independently of effects on pneumolysin by a complex process of impaired complement activation, increased binding of complement regulators, and direct degradation of complement C3. The use of human sera depleted of either C1q or factor B confirmed that LytA prevented activation of both the classical and alternative pathways, whereas pneumolysin inhibited only the classical pathway. LytA prevented binding of C1q and the acute-phase protein C-reactive protein toS. pneumoniae, thereby reducing activation of the classical pathway on the bacterial surface. In addition, LytA increased recruitment of the complement downregulators C4BP and factor H to the pneumococcal cell wall and directly cleaved C3b and iC3b to generate degradation products. As a consequence, C3b deposition and phagocytosis increased in the absence of LytA and were markedly enhanced for thelytA plydouble mutant, confirming that a combination of LytA and Ply is essential for the establishment of pneumococcal pneumonia and sepsis in a murine model of infection. These data demonstrate that LytA has pleiotropic effects on complement activation, a finding which, in combination with the effects of pneumolysin on complement to assist with pneumococcal complement evasion, confirms a major role of both proteins for the full virulence of the microorganism during septicemia.

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Teresa R. O'Meara ◽  
Stephanie M. Holmer ◽  
Kyla Selvig ◽  
Fred Dietrich ◽  
J. Andrew Alspaugh

ABSTRACTInfectious microorganisms often play a role in modulating the immune responses of their infected hosts. We demonstrate thatCryptococcus neoformanssignals through the Rim101 transcription factor to regulate cell wall composition and the host-pathogen interface. In the absence of Rim101,C. neoformansexhibits an altered cell surface in response to host signals, generating an excessive and ineffective immune response that results in accelerated host death. This host immune response to therim101Δ mutant strain is characterized by increased neutrophil influx into the infected lungs and an altered pattern of host cytokine expression compared to the response to wild-type cryptococcal infection. To identify genes associated with the observed phenotypes, we performed whole-genome RNA sequencing experiments under capsule-inducing conditions. We defined the downstream regulon of the Rim101 transcription factor and determined potential cell wall processes involved in the capsule attachment defects and altered mechanisms of virulence in therim101Δ mutant. The cell wall generates structural stability for the cell and allows the attachment of surface molecules such as capsule polysaccharides. In turn, the capsule provides an effective mask for the immunogenic cell wall, shielding it from recognition by the host immune system.IMPORTANCECryptococcus neoformansis an opportunistic human pathogen that is a significant cause of death in immunocompromised individuals. There are two major causes of death due to this pathogen: meningitis due to uncontrolled fungal proliferation in the brain in the face of a weakened immune system and immune reconstitution inflammatory syndrome characterized by an overactive immune response to subclinical levels of the pathogen. In this study, we examined howC. neoformansuses the conserved Rim101 transcription factor to specifically remodel the host-pathogen interface, thus regulating the host immune response. These studies explored the complex ways in which successful microbial pathogens induce phenotypes that ensure their own survival while simultaneously controlling the nature and degree of the associated host response.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Peter Mellroth ◽  
Tatyana Sandalova ◽  
Alexey Kikhney ◽  
Francisco Vilaplana ◽  
Dusan Hesek ◽  
...  

ABSTRACT The cytosolic N-acetylmuramoyl-l-alanine amidase LytA protein of Streptococcus pneumoniae, which is released by bacterial lysis, associates with the cell wall via its choline-binding motif. During exponential growth, LytA accesses its peptidoglycan substrate to cause lysis only when nascent peptidoglycan synthesis is stalled by nutrient starvation or β-lactam antibiotics. Here we present three-dimensional structures of LytA and establish the requirements for substrate binding and catalytic activity. The solution structure of the full-length LytA dimer reveals a peculiar fold, with the choline-binding domains forming a rigid V-shaped scaffold and the relatively more flexible amidase domains attached in a trans position. The 1.05-Å crystal structure of the amidase domain reveals a prominent Y-shaped binding crevice composed of three contiguous subregions, with a zinc-containing active site localized at the bottom of the branch point. Site-directed mutagenesis was employed to identify catalytic residues and to investigate the relative impact of potential substrate-interacting residues lining the binding crevice for the lytic activity of LytA. In vitro activity assays using defined muropeptide substrates reveal that LytA utilizes a large substrate recognition interface and requires large muropeptide substrates with several connected saccharides that interact with all subregions of the binding crevice for catalysis. We hypothesize that the substrate requirements restrict LytA to the sites on the cell wall where nascent peptidoglycan synthesis occurs. IMPORTANCE Streptococcus pneumoniae is a human respiratory tract pathogen responsible for millions of deaths annually. Its major pneumococcal autolysin, LytA, is required for autolysis and fratricidal lysis and functions as a virulence factor that facilitates the spread of toxins and factors involved in immune evasion. LytA is also activated by penicillin and vancomycin and is responsible for the lysis induced by these antibiotics. The factors that regulate the lytic activity of LytA are unclear, but it was recently demonstrated that control is at the level of substrate recognition and that LytA required access to the nascent peptidoglycan. The present study was undertaken to structurally and functionally investigate LytA and its substrate-interacting interface and to determine the requirements for substrate recognition and catalysis. Our results reveal that the amidase domain comprises a complex substrate-binding crevice and needs to interact with a large-motif epitope of peptidoglycan for catalysis.


2012 ◽  
Vol 80 (3) ◽  
pp. 1128-1139 ◽  
Author(s):  
Chaniya Leepiyasakulchai ◽  
Lech Ignatowicz ◽  
Andrzej Pawlowski ◽  
Gunilla Källenius ◽  
Markus Sköld

Susceptibility toMycobacterium tuberculosisis characterized by excessive lung inflammation, tissue damage, and failure to control bacterial growth. To increase our understanding of mechanisms that may regulate the host immune response in the lungs, we characterized dendritic cells expressing CD103 (αEintegrin) (αE-DCs) and CD4+Foxp3+regulatory T (Treg) cells duringM. tuberculosisinfection. In resistant C57BL/6 and BALB/c mice, the number of lung αE-DCs increased dramatically duringM. tuberculosisinfection. In contrast, highly susceptible DBA/2 mice failed to recruit αE-DCs even during chronic infection. Even though tumor necrosis factor alpha (TNF-α) is produced by multiple DCs and macrophage subsets and is required for control of bacterial growth, αE-DCs remained TNF-α negative. Instead, αE-DCs contained a high number of transforming growth factor beta-producing cells in infected mice. Further, we show that Tregcells in C57BL/6 and DBA/2 mice induce gamma interferon during pulmonary tuberculosis. In contrast to resistant mice, the Tregcell population was diminished in the lungs, but not in the draining pulmonary lymph nodes (PLN), of highly susceptible mice during chronic infection. Tregcells have been reported to inhibitM. tuberculosis-specific T cell immunity, leading to increased bacterial growth. Still, despite the reduced number of lung Tregcells in DBA/2 mice, the bacterial load in the lungs was increased compared to resistant animals. Our results show that αE-DCs and Tregcells that may regulate the host immune response are increased inM. tuberculosis-infected lungs of resistant mice but diminished in infected lungs of susceptible mice.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Mario Codemo ◽  
Sandra Muschiol ◽  
Federico Iovino ◽  
Priyanka Nannapaneni ◽  
Laura Plant ◽  
...  

ABSTRACTGram-positive bacteria, including the major respiratory pathogenStreptococcus pneumoniae, were recently shown to produce extracellular vesicles (EVs) that likely originate from the plasma membrane and are released into the extracellular environment. EVs may function as cargo for many bacterial proteins, however, their involvement in cellular processes and their interactions with the innate immune system are poorly understood. Here, EVs from pneumococci were characterized and their immunomodulatory effects investigated. Pneumococcal EVs were protruding from the bacterial surface and released into the medium as 25 to 250 nm lipid stained vesicles containing a large number of cytosolic, membrane, and surface-associated proteins. The cytosolic pore-forming toxin pneumolysin was significantly enriched in EVs compared to a total bacterial lysate but was not required for EV formation. Pneumococcal EVs were internalized into A549 lung epithelial cells and human monocyte-derived dendritic cells and induced proinflammatory cytokine responses irrespective of pneumolysin content. EVs from encapsulated pneumococci were recognized by serum proteins, resulting in C3b deposition and formation of C5b-9 membrane attack complexes as well as factor H recruitment, depending on the presence of the choline binding protein PspC. Addition of EVs to human serum decreased opsonophagocytic killing of encapsulated pneumococci. Our data suggest that EVs may act in an immunomodulatory manner by allowing delivery of vesicle-associated proteins and other macromolecules into host cells. In addition, EVs expose targets for complement factors in serum, promoting pneumococcal evasion of humoral host defense.IMPORTANCEStreptococcus pneumoniaeis a major contributor to morbidity and mortality worldwide, being the major cause of milder respiratory tract infections such as otitis and sinusitis and of severe infections such as community-acquired pneumonia, with or without septicemia, and meningitis. More knowledge is needed on how pneumococci interact with the host, deliver virulence factors, and activate immune defenses. Here we show that pneumococci form extracellular vesicles that emanate from the plasma membrane and contain virulence properties, including enrichment of pneumolysin. We found that pneumococcal vesicles can be internalized into epithelial and dendritic cells and bind complement proteins, thereby promoting pneumococcal evasion of complement-mediated opsonophagocytosis. They also induce pneumolysin-independent proinflammatory responses. We suggest that these vesicles can function as a mechanism for delivery of pneumococcal proteins and other immunomodulatory components into host cells and help pneumococci to avoid complement deposition and phagocytosis-mediated killing, thereby possibly contributing to the symptoms found in pneumococcal infections.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Moon H. Nahm ◽  
Jigui Yu ◽  
Jiri Vlach ◽  
Maor Bar-Peled

ABSTRACT We are exposed daily to many glycans from bacteria and food plants. Bacterial glycans are generally antigenic and elicit antibody responses. It is unclear if food glycans’ sharing of antigens with bacterial glycans influences our immune responses to bacteria. We studied 14 different plant foods for cross-reactivity with monoclonal antibodies (MAbs) against 24 pneumococcal serotypes which commonly cause infections and are included in pneumococcal vaccines. Serotype 15B-specific MAb cross-reacts with fruit peels, and serotype 10A MAb cross-reacts with many natural and processed plant foods. The serotype 10A cross-reactive epitope is 1,6-β-galactosidase [βGal(1-6)], present in the rhamno-galacturonan I (RG-I) domain of pectin. Despite wide consumption of pectin, the immune response to 10A is comparable to the responses to other serotypes. An antipectin antibody can opsonize serotype 10A pneumococci, and the shared βGal(1-6) may be useful as a simple vaccine against 10A. Impact of food glycans should be considered in host-pathogen interactions and future vaccine designs. IMPORTANCE The impact of food consumption on vaccine responses is unknown. Streptococcus pneumoniae (the pneumococcus) is an important human pathogen, and its polysaccharide capsule is used as a vaccine. We show that capsule type 10A in a pneumococcal vaccine shares an antigenic epitope, βGal(1-6), with pectin, which is in many plant foods and is widely consumed. Immune response to 10A is comparable to that seen with other capsule types, and pectin ingestion may have little impact on vaccine responses. However, antibody to pectin can kill serotype 10A pneumococci and this shared epitope may be considered in pneumococcal vaccine designs.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Jeroen D. Langereis ◽  
Amelieke J. H. Cremers ◽  
Marloes Vissers ◽  
Josine van Beek ◽  
Jacques F. Meis ◽  
...  

ABSTRACTNontypeableHaemophilus influenzae(NTHi) bacteria express various molecules that contribute to their virulence. The presence of phosphocholine (PCho) on NTHi lipooligosaccharide increases adhesion to epithelial cells and is an advantage for the bacterium, enabling nasopharyngeal colonization, as measured in humans and animal models. However, when PCho is expressed on the lipooligosaccharide, it is also recognized by the acute-phase protein C-reactive protein (CRP) and PCho-specific antibodies, both of which are potent initiators of the classical pathway of complement activation. In this study, we show that blood isolates, which are exposed to CRP and PCho-specific antibodies in the bloodstream, have a higher survival in serum than oropharyngeal isolates, which was associated with a decreased presence of PCho. PCholowstrains showed decreased IgM, CRP, and complement C3 deposition, which was associated with increased survival in human serum. Consistent with the case for the PCholowstrains, removal of PCho expression bylicAgene deletion decreased IgM, CRP, and complement C3 deposition, which increased survival in human serum. Complement-mediated killing of PChohighstrains was mainly dependent on binding of IgM to the bacterial surface. These data support the hypothesis that a PCholowphenotype was selected in blood during invasive disease, which increased resistance to serum killing, mainly due to lowered IgM and CRP binding to the bacterial surface.


2016 ◽  
Vol 60 (4) ◽  
pp. 2326-2335 ◽  
Author(s):  
Ana C. Mesa-Arango ◽  
Cristina Rueda ◽  
Elvira Román ◽  
Jessica Quintin ◽  
María C. Terrón ◽  
...  

ABSTRACTWe have morphologically characterizedCandida tropicalisisolates resistant to amphotericin B (AmB). These isolates present an enlarged cell wall compared to isolates of regular susceptibility. This correlated with higher levels of β-1,3-glucan in the cell wall but not with detectable changes in chitin content. In line with this, AmB-resistant strains showed reduced susceptibility to Congo red. Moreover, mitogen-activated protein kinases (MAPKs) involved in cell integrity were already activated during regular growth in these strains. Finally, we investigated the response elicited by human blood cells and found that AmB-resistant strains induced a stronger proinflammatory response than susceptible strains. In agreement, AmB-resistant strains also induced stronger melanization ofGalleria mellonellalarvae, indicating that the effect of alterations of the cell wall on the immune response is conserved in different types of hosts. Our results suggest that resistance to AmB is associated with pleiotropic mechanisms that might have important consequences, not only for the efficacy of the treatment but also for the immune response elicited by the host.


2007 ◽  
Vol 82 (2) ◽  
pp. 817-827 ◽  
Author(s):  
Rheba S. Bonaparte ◽  
Pamela S. Hair ◽  
Deepa Banthia ◽  
Dawn M. Marshall ◽  
Kenji M. Cunnion ◽  
...  

ABSTRACT Human astroviruses (HAstVs) belong to a family of nonenveloped, icosahedral RNA viruses that cause noninflammatory gastroenteritis, predominantly in infants. Eight HAstV serotypes have been identified, with a worldwide distribution. While the HAstVs represent a significant public health concern, very little is known about the pathogenesis of and host immune response to these viruses. Here we demonstrate that HAstV type 1 (HAstV-1) virions, specifically the viral coat protein (CP), suppress the complement system, a fundamental component of the innate immune response in vertebrates. HAstV-1 virions and purified CP both suppress hemolytic complement activity. Hemolytic assays utilizing sera depleted of individual complement factors as well as adding back purified factors demonstrated that HAstV CP suppresses classical pathway activation at the first component, C1. HAstV-1 CP bound the A chain of C1q and inhibited serum complement activation, resulting in decreased C4b, iC3b, and terminal C5b-9 formation. Inhibition of complement activation was also demonstrated for HAstV serotypes 2 to 4, suggesting that this phenomenon is a general feature of these human pathogens. Since complement is a major contributor to the initiation and amplification of inflammation, the observed CP-mediated inhibition of complement activity may contribute to the lack of inflammation associated with astrovirus-induced gastroenteritis. Although diverse mechanisms of inhibition of complement activation have been described for many enveloped animal viruses, this is the first report of a nonenveloped icosahedral virus CP inhibiting classical pathway activation at C1.


2016 ◽  
Vol 84 (10) ◽  
pp. 3063-3070 ◽  
Author(s):  
Kelly J. Pittman ◽  
Patrick W. Cervantes ◽  
Laura J. Knoll

Intrinsic toToxoplasma gondiiinfection is the parasite-induced modulation of the host immune response, which ensures establishment of a chronic lifelong infection. This manipulation of the host immune response allowsT. gondiito not only dampen the ability of the host to eliminate the parasite but also trigger parasite differentiation to the slow-growing, encysted bradyzoite form. We previously used RNA sequencing (RNA-seq) to profile the transcriptomes of mice andT. gondiiduring acute and chronic stages of infection. One of the most abundant host transcripts during acute and chronic infection was Z-DNA binding protein 1 (ZBP1). In this study, we determined that ZBP1 functions to controlT. gondiigrowth. In activated macrophages isolated from ZBP1 deletion (ZBP1−/−) mice,T. gondiihas an increased rate of replication and a decreased rate of degradation. We also identified a novel function for ZBP1 as a regulator of nitric oxide (NO) production in activated macrophages, even in the absence ofT. gondiiinfection. Upon stimulation,T. gondii-infected ZBP1−/−macrophages display increased proinflammatory cytokines compared to wild-type macrophages under the same conditions. Thesein vitrophenotypes were recapitulatedin vivo, with ZBP1−/−mice having increased susceptibility to oral challenge, higher cyst burdens during chronic infection, and elevated inflammatory cytokine responses. Taken together, these results highlight a role for ZBP1 in assisting host control ofT. gondiiinfection.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Sumanta Kumar Naik

ABSTRACT Sumanta K. Naik works in the tuberculosis field, with a specific interest in the host immune response to Mycobacterium tuberculosis infection. In this mSphere of Influence article, he reflects on how the paper “IRGM1 links mitochondrial quality control to autoimmunity” by Prashant Rai et al. (Nat Immunol, 22:312–321, 2021, https://doi.org/10.1038/s41590-020-00859-0) impacted his research by revealing new roles for Irgm1 in immune responses.


Sign in / Sign up

Export Citation Format

Share Document