scholarly journals Serine/Threonine Protein Kinase Stk Is Required for Virulence, Stress Response, and Penicillin Tolerance in Streptococcus pyogenes

2011 ◽  
Vol 79 (10) ◽  
pp. 4201-4209 ◽  
Author(s):  
Julia Bugrysheva ◽  
Barbara J. Froehlich ◽  
Jeffrey A. Freiberg ◽  
June R. Scott

ABSTRACTGenes encoding one or more Ser/Thr protein kinases have been identified recently in many bacteria, including one (stk) in the human pathogenStreptococcus pyogenes(group A streptococcus [GAS]). We report that in GAS,stkis required to produce disease in a murine myositis model of infection. Using microarray and quantitative reverse transcription-PCR (qRT-PCR) studies, we found that Stk activates genes for virulence factors, osmoregulation, metabolism of α-glucans, and fatty acid biosynthesis, as well as genes affecting cell wall synthesis. Confirming these transcription studies, we determined that thestkdeletion mutant is more sensitive to osmotic stress and to penicillin than the wild type. We discuss several possible Stk phosphorylation targets that might explain Stk regulation of expression of specific operons and the possible role of Stk in resuscitation from quiescence.

2020 ◽  
pp. 64-70
Author(s):  
Anastasiya Laknitskaya

Currently, one of the priority medical and social problems is the optimization of treatment methods for pyoderma associated with Streptococcus pyogenes — group A streptococcus (GAS). To date, the proportion of pyoderma, the etiological factor of which is Streptococcus pyogenes, is about 6 % of all skin diseases and is in the range from 17.9 to 43.9 % of all dermatoses. Role of the bacterial factor in the development of streptococcal pyoderma is obvious. Traditional treatment complex includes antibacterial drugs selected individually, taking into account the antibiotic sensitivity of pathognomonic bacteria, and it is not always effective. Currently implemented immunocorrection methods often do not take into account specific immunological features of the disease, the individual, and the fact that the skin performs the function of not only a mechanical barrier, but it is also an immunocompetent organ. Such an approach makes it necessary to conduct additional studies clarifying the role of factors of innate and adaptive immunity, intercellular mediators and antioxidant defense system, that allow to optimize the treatment of this pathology.


2015 ◽  
Vol 83 (11) ◽  
pp. 4293-4303 ◽  
Author(s):  
Guanghui Liu ◽  
Wenchao Feng ◽  
Dengfeng Li ◽  
Mengyao Liu ◽  
Daniel C. Nelson ◽  
...  

ABSTRACTInvasive M1T1 group AStreptococcus(GAS) can have a mutation in the regulatory system CovRS, and this mutation can render strains hypervirulent. Interestingly, via mechanisms that are not well understood, the host innate immune system's neutrophils select spontaneous M1T1 GAS CovRS hypervirulent mutants, thereby enhancing the pathogen's ability to evade immune killing. It has been reported that the DNase Sda1 is critical for the resistance of M1T1 strain 5448 to killing in human blood and provides pressure forin vivoselection of CovRS mutations. We reexamined the role of Sda1 in the selection of CovRS mutations and in GAS innate immune evasion. Deletion ofsda1or all DNase genes in M1T1 strain MGAS2221 did not alter emergence of CovRS mutants during murine infection. Deletion ofsda1in strain 5448 resulted in Δsda1mutants with (5448 Δsda1M+strain) and without (5448 Δsda1M−strain) M protein production. The 5448 Δsda1M+strain accumulated CovRS mutationsin vivoand resisted killing in the bloodstream, whereas the 5448 Δsda1M−strain lostin vivoselection of CovRS mutations and was sensitive to killing. The deletion ofemmand a spontaneous Mga mutation in MGAS2221 reduced and preventedin vivoselection for CovRS mutants, respectively. Thus, in contrast to previous reports, Sda1 is not critical forin vivoselection of invasive M1T1 CovRS mutants and GAS resistance to innate immune killing mechanisms. In contrast, M protein and other Mga-regulated proteins contribute to thein vivoselection of M1T1 GAS CovRS mutants. These findings advance the understanding of the progression of invasive M1T1 GAS infections.


2011 ◽  
Vol 77 (15) ◽  
pp. 5149-5156 ◽  
Author(s):  
Sara Salvetti ◽  
Karoline Faegri ◽  
Emilia Ghelardi ◽  
Anne-Brit Kolstø ◽  
Sonia Senesi

ABSTRACTBacillus cereuscan use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response ofB. cereusATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K+transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entirehbloperon during swarming. Finally, BC1435 and BC1436, orthologs ofliaI-liaHthat are known to be involved in the resistance ofBacillus subtilisto daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarmingB. cereuscells to daptomycin, and Pspac-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response ofB. cereusto daptomycin.


2006 ◽  
Vol 188 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Tracy L. Dalton ◽  
Julie T. Collins ◽  
Timothy C. Barnett ◽  
June R. Scott

ABSTRACT The ability of Streptococcus pyogenes (group A streptococcus [GAS]) to respond to changes in environmental conditions is essential for this gram-positive organism to successfully cause disease in its human host. The two-component system CovRS controls expression of about 15% of the GAS genome either directly or indirectly. In most operons studied, CovR acts as a repressor. We previously linked CovRS to the GAS stress response by showing that the sensor kinase CovS is required to inactivate the response regulator CovR so that GAS can grow under conditions of heat, acid, and salt stress. Here, we sought to identify CovR-repressed genes that are required for growth under stress. To do this, global transcription profiles were analyzed by microarrays following exposure to increased temperature (40°C) and decreased pH (pH 6.0). The CovR regulon in an M type 6 strain of GAS was also examined by global transcriptional analysis. We identified a gene, rscA (regulated by stress and Cov), whose transcription was confirmed to be repressed by CovR and activated by heat and acid. RscA is a member of the MDR1 family of ABC transporters, and we found that it is required for growth of GAS at 40°C but not at pH 6.0. Thus, for GAS to grow at 40°C, CovR repression must be alleviated so that rscA can be transcribed to allow the production of this potential exporter. Possible explanations for the thermoprotective role of RscA in this pathogen are discussed.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Hannah R. Frost ◽  
Mark R. Davies ◽  
Valérie Delforge ◽  
Dalila Lakhloufi ◽  
Martina Sanderson-Smith ◽  
...  

ABSTRACT The core Mga (multiple gene activator) regulon of group A Streptococcus (GAS) contains genes encoding proteins involved in adhesion and immune evasion. While all GAS genomes contain genes for Mga and C5a peptidase, the intervening genes encoding M and M-like proteins vary between strains. The genetic make-up of the Mga regulon of GAS was characterized by utilizing a collection of 1,688 GAS genomes that are representative of the global GAS population. Sequence variations were examined with multiple alignments, and the expression of all core Mga regulon genes was examined by quantitative reverse transcription-PCR in a representative strain collection. In 85.2% of the sampled genomes, the Mga locus contained genes encoding Mga, Mrp, M, Enn, and C5a peptidase proteins. These isolates account for 53% of global infections. Only 9.1% of genomes did not contain either an mrp or an enn gene. The pairwise identity within Enn (68.6%) and Mrp (83.2%) protein sequences was higher than within M proteins (44.7%). Gene expression varied between strains tested, but high expression was recorded for all genes in at least one strain. Previous nomenclature issues were clarified with molecular gene definitions. Our findings support a shift in focus in the GAS research field to further consider the role of Mrp and Enn in virulence and vaccine development. IMPORTANCE While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity.


2011 ◽  
Vol 77 (13) ◽  
pp. 4422-4428 ◽  
Author(s):  
Julia V. Bugrysheva ◽  
Barbara J. Froehlich ◽  
Jeffrey A. Freiberg ◽  
June R. Scott

ABSTRACTSelection of possible targets for vaccine and drug development requires an understanding of the physiology of bacterial pathogens, for which the ability to manipulate expression of essential genes is critical. ForStreptococcus pyogenes(the group A streptococcus [GAS]), an important human pathogen, the lack of genetic tools for such studies has seriously hampered research. To address this problem, we characterized variants of the inducible Ptetcassette, in both sense and antisense contexts, as tools to regulate transcription from GAS genes. We found that although the three-operator Ptetconstruct [Ptet(O)3] had low uninduced expression, its induction level was low, while the two-operator construct [Ptet(O)2] was inducible to a high level but showed significant constitutive expression. Use of Ptet(O)3in the chromosome allowed us to demonstrate previously that RNases J1 and J2 are required for growth of GAS. Here we report that the uninduced level from the chromosomally inserted Ptet(O)2construct was too high for us to observe differential growth. For the highly expressed histone-like protein (Hlp) of GAS, neither chromosomal insertion of Ptet(O)2or Ptet(O)3nor their use on a high-copy-number plasmid to produce antisense RNA specific tohlpresulted in adequate differential expression. However, by replacing the ribosome binding site ofhlpwith an engineered riboswitch to control translation of Hlp, we demonstrated for the first time that this protein is essential for GAS growth.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Louisa J. Stewart ◽  
Cheryl-lynn Y. Ong ◽  
May M. Zhang ◽  
Stephan Brouwer ◽  
Liam McIntyre ◽  
...  

ABSTRACT Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion. IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.


2007 ◽  
Vol 189 (7) ◽  
pp. 2646-2652 ◽  
Author(s):  
Mark R. Davies ◽  
David J. McMillan ◽  
Gary H. Van Domselaar ◽  
Malcolm K. Jones ◽  
Kadaba S. Sriprakash

ABSTRACT Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Φ3396. Exhibiting high homology to the GAS phage Φ315.1, the chimeric nature of Φ3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Φ3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.


2014 ◽  
Vol 82 (5) ◽  
pp. 1744-1754 ◽  
Author(s):  
Tram N. Cao ◽  
Zhuyun Liu ◽  
Tran H. Cao ◽  
Kathryn J. Pflughoeft ◽  
Jeanette Treviño ◽  
...  

ABSTRACTDespite the public health challenges associated with the emergence of new pathogenic bacterial strains and/or serotypes, there is a dearth of information regarding the molecular mechanisms that drive this variation. Here, we began to address the mechanisms behind serotype-specific variation between serotype M1 and M3 strains of the human pathogenStreptococcus pyogenes(the group AStreptococcus[GAS]). Spatially diverse contemporary clinical serotype M3 isolates were discovered to contain identical inactivating mutations within genes encoding two regulatory systems that control the expression of important virulence factors, including the thrombolytic agent streptokinase, the protease inhibitor-binding protein-G-related α2-macroglobulin-binding (GRAB) protein, and the antiphagocytic hyaluronic acid capsule. Subsequent analysis of a larger collection of isolates determined that M3 GAS, since at least the 1920s, has harbored a 4-bp deletion in thefasCgene of thefasBCAXregulatory system and an inactivating polymorphism in therivRregulator-encoding gene. ThefasCandrivRmutations in M3 isolates directly affect the virulence factor profile of M3 GAS, as evident by a reduction in streptokinase expression and an enhancement of GRAB expression. Complementation of thefasCmutation in M3 GAS significantly enhanced levels of the small regulatory RNA FasX, which in turn enhanced streptokinase expression. Complementation of therivRmutation in M3 GAS restored the regulation ofgrabmRNA abundance but did not alter capsule mRNA levels. While important, thefasCandrivRmutations do not provide a full explanation for why serotype M3 strains are associated with unusually severe invasive infections; thus, further investigation is warranted.


2005 ◽  
Vol 49 (7) ◽  
pp. 2990-2993 ◽  
Author(s):  
Maria Haller ◽  
Kirsten Fluegge ◽  
Sandra Jasminder Arri ◽  
Brit Adams ◽  
Reinhard Berner

ABSTRACT A total of 301 German pediatric group A streptococcus isolates were screened for the presence of macrolide resistance and the fibronectin binding protein F1 gene (prtF1) encoding an adhesin and cell invasiveness protein. The prtF1 gene was present significantly more often among macrolide-resistant isolates. The majority of these were not clonally related.


Sign in / Sign up

Export Citation Format

Share Document