scholarly journals Development of a Single-Gene, Signature-Tag-Based Approach in Combination with Alanine Mutagenesis To Identify Listeriolysin O Residues Critical for theIn VivoSurvival of Listeria monocytogenes

2012 ◽  
Vol 80 (6) ◽  
pp. 2221-2230 ◽  
Author(s):  
Jody A. Melton-Witt ◽  
Susannah L. McKay ◽  
Daniel A. Portnoy

ABSTRACTListeriolysin O (LLO) is a pore-forming toxin of the cholesterol-dependent cytolysin (CDC) family and a primary virulence factor of the intracellular pathogenListeria monocytogenes. LLO mediates rupture of phagosomal membranes, thereby releasing bacteria into the growth-permissive host cell cytosol. Several unique features of LLO allow its activity to be precisely regulated in order to facilitate phagosomal escape, intracellular growth, and cell-to-cell spread. To improve our understanding of the multifaceted contribution of LLO to the pathogenesis ofL. monocytogenes, we developed a screen that combined saturation mutagenesis and signature tags, termedinvivoanalysis bysaturation mutagenesis andsignature tags (IVASS). We generated a library of LLO mutant strains, each harboring a single amino acid substitution and a signature tag, by using the previously described pPL2 integration vector. The signature tags acted as molecular barcodes, enabling high-throughput, parallel analysis of 40 mutants in a single animal and identification of attenuated mutants by negative selection. Using the IVASS technique we were able to screen over 90% of the 505 amino acids present in LLO and identified 60 attenuated mutants. Of these, 39 LLO residues were previously uncharacterized and potentially revealed novel functions of the toxin during infection. The mutants that were subsequently analyzedin vivoeach conferred a 2- to 4-orders of magnitude loss in virulence compared to wild type, thereby validating the screening methods. Phenotypic analysis of the LLO mutant library using commonin vitrotechniques suggested that the functional contributions of some residues could only have been revealed throughin vivoanalysis.

2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Jonathan L. Portman ◽  
Qiongying Huang ◽  
Michelle L. Reniere ◽  
Anthony T. Iavarone ◽  
Daniel A. Portnoy

ABSTRACT Cholesterol-dependent cytolysins (CDCs) represent a family of homologous pore-forming proteins secreted by many Gram-positive bacterial pathogens. CDCs mediate membrane binding partly through a conserved C-terminal undecapeptide, which contains a single cysteine residue. While mutational changes to other residues in the undecapeptide typically have severe effects, mutation of the cysteine residue to alanine has minor effects on overall protein function. Thus, the role of this highly conserved reactive cysteine residue remains largely unknown. We report here that the CDC listeriolysin O (LLO), secreted by the facultative intracellular pathogen Listeria monocytogenes, was posttranslationally modified by S-glutathionylation at this conserved cysteine residue and that either endogenously synthesized or exogenously added glutathione was sufficient to form this modification. When recapitulated with purified protein in vitro, this modification completely ablated the activity of LLO, and this inhibitory effect was fully reversible by treatment with reducing agents. A cysteine-to-alanine mutation in LLO rendered the protein completely resistant to inactivation by S-glutathionylation, and a mutant expressing this mutation retained full hemolytic activity. A mutant strain of L. monocytogenes expressing the cysteine-to-alanine variant of LLO was able to infect and replicate within bone marrow-derived macrophages indistinguishably from the wild type in vitro, yet it was attenuated 4- to 6-fold in a competitive murine infection model in vivo. This study suggests that S-glutathionylation may represent a mechanism by which CDC-family proteins are posttranslationally modified and regulated and help explain an evolutionary pressure to retain the highly conserved undecapeptide cysteine.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Katharina Schaufler ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
Darren J. Trott ◽  
Johann Pitout ◽  
...  

ABSTRACT The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Gen Li ◽  
Guizhen Wang ◽  
Meng Li ◽  
Li Li ◽  
Hongtao Liu ◽  
...  

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Kathryn McLean ◽  
Duankun Lee ◽  
Elizabeth A. Holmes ◽  
Kelsi Penewit ◽  
Adam Waalkes ◽  
...  

ABSTRACTInhaled aztreonam is increasingly used for chronicPseudomonas aeruginosasuppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapyin vivo. We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent beingftsIandampC, and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance. Given its potential to confer plasmid-mediated resistance, we further characterized mutantampCalleles and performed artificial evolution ofampCfor maximal activity against aztreonam. We found that naturally occurringampCmutants conferred variably increased resistance to aztreonam (2- to 64-fold) and other β-lactam agents but that its maximal evolutionary capacity for hydrolyzing aztreonam was considerably higher (512- to 1,024-fold increases) and was achieved while maintaining or increasing resistance to other drugs. These studies implicate novel chromosomal aztreonam resistance determinants while highlighting that different mutations are favored during selectionin vivoandin vitro, show thatampChas a high maximal potential to hydrolyze aztreonam, and provide an approach to disambiguate mutations promoting specific resistance phenotypes from those more generally increasing bacterial fitnessin vivo.


2011 ◽  
Vol 79 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Chris S. Rae ◽  
Aimee Geissler ◽  
Paul C. Adamson ◽  
Daniel A. Portnoy

ABSTRACTListeria monocytogenesis a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, includingL. monocytogenes.L. monocytogenespeptidoglycan is deacetylated by the action ofN-acetylglucosamine deacetylase (Pgd) and acetylated byO-acetylmuramic acid transferase (Oat). We characterized Pgd−, Oat−, and double mutants to determine the specific role ofL. monocytogenespeptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd−and Pgd−Oat−double mutants were attenuated approximately 2 and 3.5 logs, respectively,in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of thein vitrophenotypes was rescued upon infection of LysM−macrophages. The addition of extracellular lysozyme to LysM−macrophages restored cytokine induction, host cell death, andL. monocytogenesgrowth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.


2014 ◽  
Vol 80 (23) ◽  
pp. 7415-7422 ◽  
Author(s):  
Marite Bradshaw ◽  
William H. Tepp ◽  
Regina C. M. Whitemarsh ◽  
Sabine Pellett ◽  
Eric A. Johnson

ABSTRACTClostridium botulinumsubtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producingC. botulinumstrain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenicC. botulinumexpression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided intransby the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed inEscherichia colihas indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of thein vitro, cellular, andin vivoactivities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.


2009 ◽  
Vol 77 (10) ◽  
pp. 4371-4382 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Hector Vivanco-Cid ◽  
Emil R. Unanue

ABSTRACT Listeriolysin O (LLO) is an essential virulence factor for the gram-positive bacterium Listeria monocytogenes. Our goal was to determine if altering the topology of LLO would alter the virulence and toxicity of L. monocytogenes in vivo. A recombinant strain was generated that expressed a surface-associated LLO (sLLO) variant secreted at 40-fold-lower levels than the wild type. In culture, the sLLO strain grew in macrophages, translocated to the cytosol, and induced cell death. However, the sLLO strain showed decreased infectivity, reduced lymphocyte apoptosis, and decreased virulence despite a normal in vitro phenotype. Thus, the topology of LLO in L. monocytogenes was a factor in the pathogenesis of the infection and points to a role of LLO secretion during in vivo infection. The sLLO strain was cleared by severe combined immunodeficient (SCID) mice. Despite the attenuation of virulence, the sLLO strain was immunogenic and capable of eliciting protective T-cell responses.


2021 ◽  
Vol 89 (5) ◽  
Author(s):  
Hans B. Smith ◽  
Tin Lok Li ◽  
Man Kit Liao ◽  
Grischa Y. Chen ◽  
Zhihong Guo ◽  
...  

ABSTRACT Listeria monocytogenes is a Gram-positive, intracellular pathogen that is highly adapted to invade and replicate in the cytosol of eukaryotic cells. Intermediate metabolites in the menaquinone biosynthesis pathway are essential for the cytosolic survival and virulence of L. monocytogenes, independent of the production of menaquinone (MK) and aerobic respiration. Determining which specific intermediate metabolite(s) are essential for cytosolic survival and virulence has been hindered by the lack of an identified 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) thioesterase essential for converting DHNA-CoA to DHNA in the MK synthesis pathway. Using the recently identified Escherichia coli DHNA-CoA thioesterase as a query, homology sequence analysis revealed a single homolog in L. monocytogenes, LMRG_02730. Genetic deletion of LMRG_02730 resulted in an ablated membrane potential, indicative of a nonfunctional electron transport chain (ETC) and an inability to aerobically respire. Biochemical kinetic analysis of LMRG_02730 revealed strong activity toward DHNA-CoA, similar to its E. coli homolog, further demonstrating that LMRG_02730 is a DHNA-CoA thioesterase. Functional analyses in vitro, ex vivo, and in vivo using mutants directly downstream and upstream of LMRG_02730 revealed that DHNA-CoA is sufficient to facilitate in vitro growth in minimal medium, intracellular replication, and plaque formation in fibroblasts. In contrast, protection against bacteriolysis in the cytosol of macrophages and tissue-specific virulence in vivo requires the production of 1,4-dihydroxy-2-naphthoate (DHNA). Taken together, these data implicate LMRG_02730 (renamed MenI) as a DHNA-CoA thioesterase and suggest that while DHNA, or an unknown downstream product of DHNA, protects the bacteria from killing in the macrophage cytosol, DHNA-CoA is necessary for intracellular bacterial replication.


2017 ◽  
Vol 85 (11) ◽  
Author(s):  
Mylène M. Maury ◽  
Viviane Chenal-Francisque ◽  
Hélène Bracq-Dieye ◽  
Lei Han ◽  
Alexandre Leclercq ◽  
...  

ABSTRACT The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes. Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA. Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA−/LLO−) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA−/LLO− mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.


Sign in / Sign up

Export Citation Format

Share Document