scholarly journals Transgenic Expression of a Mosquito-Stage Malarial Protein, Pbs21, in Blood Stages of Transformed Plasmodium bergheiand Induction of an Immune Response upon Infection

1998 ◽  
Vol 66 (8) ◽  
pp. 3884-3891 ◽  
Author(s):  
Gabriele Margos ◽  
Melissa R. van Dijk ◽  
Jai Ramesar ◽  
Chris J. Janse ◽  
Andrew P. Waters ◽  
...  

ABSTRACT Pbs21 is a surface protein of the ookinete of Plasmodium berghei, which can induce a potent transmission-blocking immune response. Pbs21 is normally expressed only by parasite stages in the mosquito, i.e., female gametes/zygotes, ookinetes, and oocysts. However, the Pbs21 gene is transcribed in female gametocytes which circulate in the bloodstream of the host, where translation of the resulting mRNA is totally repressed. Episomal transfection has been used to investigate whether expression of Pbs21 protein could be achieved in blood stages of the parasite. By using plasmid pMD221, the complete mRNA-encoding region of Pbs21, flanked only by 218 nucleotides (nt) of its promoter region and 438 nt of its 3′ region downstream from the polyadenylation site, was introduced into the blood stages of gametocyte-producing and non-gametocyte-producing clones of P. berghei. In both of these transformed parasite lines, Pbs21 protein was expressed in asexual trophozoites, schizonts, and, when present, in both male and female gametocytes. Hence, the flanking regions present are sufficient to allow transcription but lack the elements that exert natural control of sex- and stage-specific transcription. The mRNA and the protein expressed by transformed blood stages were indistinguishable from the wild-type forms by the criteria tested, and the protein was recognized by both conformation-dependent and conformation-independent monoclonal antibodies raised against native Pbs21. In mice infected with transformed non-gametocyte-producing parasites, a Pbs21-specific immune response was induced and characterized with respect to isotype (IgG2a/IgG2b) and quantity (11.5 ± 10 μg/ml) of antibody produced. However, as found in previous studies, these antibody levels were insufficient to inhibit development of the parasites in the mosquito. The ability to express mosquito midgut-stage antigens in blood-stage parasites will facilitate further investigations of molecular and immunological properties of these proteins.

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 345
Author(s):  
Carla Morales-Ferré ◽  
Ignasi Azagra-Boronat ◽  
Malén Massot-Cladera ◽  
Àngels Franch ◽  
Margarida Castell ◽  
...  

Rotaviruses (RVs) are the leading pathogens causing severe and acute diarrhea in children and animals. It is well known that sex contributes to shaping immune responses, thus it could also influence the incidence and severity of the RV infection. The aim of this study was to analyze the influence of sexual dimorphism on RV infection and its antibody (Ab) immune response in a suckling rat model. Neonatal suckling rats were intragastrically RV-inoculated and clinical indexes derived from fecal samples, as well as immune variables were evaluated. Higher severity of diarrhea, fecal weight and viral elimination were observed in males compared to females (p < 0.05). Regarding the adaptative immunity, the RV shaped the immune response to lower IgG1 levels and an increased Th1/Th2-associated Ab response (p < 0.05). Although females had lower IgG2a levels than males (p < 0.05), the specific anti-RV antibody levels were not sex influenced. In fact, at this age the passive transfer of anti-RV antibodies through breast milk was the critical factor for clustering animals, independently of their sex. It can be concluded that male and female diarrhea severity in RV infection is slightly influenced by sexual dimorphism and is not associated with the specific immune response against the virus.


2008 ◽  
Vol 82 (13) ◽  
pp. 6610-6617 ◽  
Author(s):  
Karen A. Chachu ◽  
David W. Strong ◽  
Anna D. LoBue ◽  
Christiane E. Wobus ◽  
Ralph S. Baric ◽  
...  

ABSTRACT Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1−/− mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.


2007 ◽  
Vol 14 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Pimmada Jeamwattanalert ◽  
Yuvadee Mahakunkijcharoen ◽  
Leera Kittigul ◽  
Pakpimol Mahannop ◽  
Sathit Pichyangkul ◽  
...  

ABSTRACT Merozoite surface protein 1 (MSP1) is the major protein on the surface of the plasmodial merozoite, and its carboxy terminus, the 19-kDa fragment (MSP119), is highly conserved and effective in induction of a protective immune response against malaria parasite infection in mice and monkeys. However, the duration of the immune response has not been elucidated. As such, we immunized BALB/c mice with a standard four-dose injection of recombinant Plasmodium yoelii MSP119 formulated with Montanide ISA51 and CpG oligodeoxynucleotide (ODN) and monitored the MSP119-specific antibody levels for up to 12 months. The antibody titers persisted constantly over the period of time without significant waning, in contrast to the antibody levels induced by immunization with Freund's adjuvant, where the antibody levels gradually declined to significantly lower levels 12 months after immunization. Investigation of immunoglobulin G (IgG) subclass longevity revealed that only the IgG1 antibody level (Th2 type-driven response) decreased significantly by 6 months, while the IgG2a antibody level (Th1 type-driven response) did not change over the 12 months after immunization, but the boosting effect was seen in the IgG1 antibody responses but not in the IgG2a antibody responses. After challenge infection, all immunized mice survived with negligibly patent parasitemia. These findings suggest that protective immune responses to MSP119 following immunization using oil-based Montanide ISA51 and CpG ODN as an adjuvant are very long-lasting and encourage clinical trials for malaria vaccine development.


Author(s):  
Jessica A. Breznik ◽  
Ali Zhang ◽  
Angela Huynh ◽  
Matthew S. Miller ◽  
Ishac Nazy ◽  
...  

AbstractNursing home residents often fail to mount robust responses to vaccinations and recent reports of breakthrough infections, particularly from variants of concern, raise questions about whether vaccination regimens elicit a sufficient humoral immune response or if booster doses are warranted. We examined SARS-CoV-2 antibody levels and neutralizing capacity in nursing home residents 3-5 months after 2 doses of mRNA-1273 or BNT163b2 vaccination as per recommended schedules.Nursing home residents were recruited from eight long-term care homes in Ontario, Canada, between March and July 2021. Antibody levels and neutralization capacity from a previously published convalescent cohort were used as a comparator. Serum SARS-CoV-2 IgA/G/M against spike (S) protein and its receptor-binding domain (RBD) were measured by validated ELISA, with assay cut-off at the mean and 3 standard deviations of a pre-COVID-19 population from the same geographic region. Antibody neutralization was measured against the wild-type strain of SARS-CoV-2 and the beta variant of concern (B.1.351).No neutralizing antibodies were detected in ∼20% of residents to the wild-type virus (30/155; 19%) or beta variant (27/134; 20%). Residents that received BNT163b2 had a ∼4-fold reduction in neutralization to the wild-type strain, and a ∼2-fold reduction in neutralization to the beta variant relative to those who received mRNA-1273.Current mRNA SARS-CoV-2 vaccine regimens may not have equivalent efficacy in nursing home residents. Our findings imply that differences in the humoral immune response may contribute to breakthrough infections, and suggest that consideration of the type of vaccine administered to older adults will have a positive impact on the generation of protective immunity.


1999 ◽  
Vol 67 (5) ◽  
pp. 2277-2283 ◽  
Author(s):  
Rosemary Sok-Pin Tan ◽  
Chiguang Feng ◽  
Yoshihiro Asano ◽  
Anna Ursula Kara

ABSTRACT Nitric oxide (NO) is a short-lived biological mediator which can be induced in various cell types and is able to cause many metabolic changes in target cells. Inhibition of tumor cell growth and antimicrobial activity has been attributed to the stimulation of NO production by transcriptional upregulation of inducible nitric oxide synthase. In the present study, we used mice devoid of functional interferon regulatory factor 1 by targeted gene disruption (IRF-1−/−) to investigate the role of NO in the host immune response against blood-stage Plasmodium berghei ANKA infection. IRF-1−/− mice survived longer with a later onset of and a lower peak parasitemia despite the inability to produce appreciable levels of NO. The administration of exogenous interleukin-12 (IL-12) was able to prolong survival in the wild-type mice with an upregulation in the expression of both gamma interferon (IFN-γ) and NO. However, the administration of IL-12 did not improve the survival of IRF-1−/− mice. These studies indicate that while IL-12 is able to mediate protection via an IFN-γ- and NO-dependent pathway in the wild-type mice, such a protective mechanism may not be functional in the IRF-1−/− mice. Our results suggest that NO may not be essential for host immunity to the parasite and that IRF-1−/− mice are able to induce an IFN-γ- and NO-independent mechanism against P. berghei infection.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2231
Author(s):  
István Kiss ◽  
Krisztina Szigeti ◽  
Zalán G. Homonnay ◽  
Vivien Tamás ◽  
Han Smits ◽  
...  

Piglets from a porcine circovirus type 2 (PCV2) stable farm of low and high levels of maternally derived antibodies (MDA) against PCV2 were vaccinated either with a whole virus type or a PCV2 ORF2 antigen-based commercial subunit vaccine at three weeks of age. Two non-vaccinated groups served as low and high MDA positive controls. At four weeks post vaccination, all piglets were challenged with a PCV2d-2 type virus strain and were checked for parameters related to vaccine protection over a four-week observation period. MDA levels evidently impacted the outcome of the PCV2d-2 challenge in non-vaccinated animals, while it did not have a significant effect on vaccine-induced protection levels. The humoral immune response developed faster in the whole virus vaccinates than in the subunit vaccinated pigs in the low MDA groups. Further, high MDA levels elicited a stronger negative effect on the vaccine-induced humoral immune response for the subunit vaccine than for the whole virus vaccine. The group-based oral fluid samples and the group mean viraemia and faecal shedding data correlated well, enabling this simple, and animal welfare-friendly sampling method for the evaluation of the PCV2 viral load status of these nursery piglets.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


2019 ◽  
Vol 222 (4) ◽  
pp. 572-582 ◽  
Author(s):  
Louis Fries ◽  
Iksung Cho ◽  
Verena Krähling ◽  
Sarah K Fehling ◽  
Thomas Strecker ◽  
...  

Abstract Background Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. Methods A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. Results All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. Conclusions Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.


Sign in / Sign up

Export Citation Format

Share Document