scholarly journals Limited Local and Systemic Antibody Responses toNeisseria gonorrhoeae during Uncomplicated Genital Infections

1999 ◽  
Vol 67 (8) ◽  
pp. 3937-3946 ◽  
Author(s):  
Spencer R. Hedges ◽  
Matthew S. Mayo ◽  
Jiri Mestecky ◽  
Edward W. Hook ◽  
Michael W. Russell

ABSTRACT Repeated infections with Neisseria gonorrhoeae are common among patients attending sexually transmitted disease clinics. We examined whether previous infections or site of infection altered the local and systemic antigonococcal antibody levels in males and females. Antibodies against N. gonorrhoeae MS11 and the patients’ homologous infecting isolates were measured by enzyme-linked immunosorbent assay. In general, the local and systemic immune responses to gonococci were extremely modest. There was a slight increase in serum immunoglobulin G (IgG) against the MS11 strain and the homologous isolates in infected males. Levels of serum IgA1 antibodies against MS11 were slightly higher in infected than in uninfected females. A history of previous infections with N. gonorrhoeae did not alter the antibody levels in patients with a current infection, suggesting that immunological memory is not induced by uncomplicated gonococcal infections. Antibody responses to infected subjects’ homologous isolates were observed in cervical mucus; IgA1 levels increased while IgG levels decreased. The decline in mucosal IgG against the homologous isolates was less common in subjects having both rectal and cervical infections; otherwise, no effect of rectal involvement was observed. The absence of substantially higher antibody levels to gonococci where there is infection at a site known to contain organized lymphoid tissue suggests that the low levels of responses to uncomplicated infections may not be due simply to an absence of inductive sites in the genital tract. We propose that in addition to its potential ability to avoid the effects of an immune response,N. gonorrhoeae does not elicit strong humoral immune responses during uncomplicated genital infections.

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elizabeth Fraley ◽  
Cas LeMaster ◽  
Eric Geanes ◽  
Dithi Banerjee ◽  
Santosh Khanal ◽  
...  

Abstract Background The global pandemic of coronavirus disease 2019 (COVID-19) is caused by infection with the SARS-CoV-2 virus. Currently, there are three approved vaccines against SARS-CoV-2 in the USA, including two based on messenger RNA (mRNA) technology that has demonstrated high vaccine efficacy. We sought to characterize humoral immune responses, at high resolution, during immunization with the BNT162b2 (Pfizer-BioNTech) vaccine in individuals with or without prior history of natural SARS-CoV-2 infection. Methods We determined antibody responses after each dose of the BNT162b2 SARS-CoV-2 vaccine in individuals who had no prior history of SARS-CoV-2 infection (seronegative) and individuals that had previous viral infection 30–60 days prior to first vaccination (seropositive). To do this, we used both an antibody isotype-specific multiplexed bead-based binding assays targeting multiple SARS-CoV-2 viral protein antigens and an assay that identified potential SARS-CoV-2 neutralizing antibody levels. Moreover, we mapped antibody epitope specificity after immunization using SARS-CoV-2 spike protein peptide arrays. Results Antibody levels were significantly higher after a single dose in seropositive individuals compared to seronegative individuals and were comparable to levels observed in seronegative individuals after two doses. While IgG was boosted by vaccination for both seronegative and seropositive individuals, only seronegative individuals had increased IgA or IgM antibody titers after primary immunization. We identified immunodominant peptides targeted on both SARS-CoV-2 spike S1 and S2 subunits after vaccination. Conclusion These findings demonstrated the antibody responses to SARS-CoV-2 immunization in seropositive and seronegative individuals and provide support for the concept of using prior infection history as a guide for the consideration of future vaccination regimens. Moreover, we identified key epitopes on the SARS-CoV-2 spike protein that are targeted by antibodies after vaccination that could guide future vaccine and immune correlate development.


2009 ◽  
Vol 16 (3) ◽  
pp. 323-329 ◽  
Author(s):  
P. Nol ◽  
K. P. Lyashchenko ◽  
R. Greenwald ◽  
J. Esfandiari ◽  
W. R. Waters ◽  
...  

ABSTRACT Monitoring of the kinetics of production of serum antibodies to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and the efficacy of intervention strategies in several species. The humoral immune responses to multiple M. bovis antigens by white-tailed deer vaccinated with BCG orally via a lipid-formulated bait (n = 5), orally in liquid form (n = 5), and subcutaneously (n = 6) were evaluated over time after vaccination and after experimental challenge with virulent M. bovis and were compared to the responses by unvaccinated deer (n = 6). Antibody responses were evaluated by using a rapid test (RT), a multiantigen print immunoassay (MAPIA), a lipoarabinomannan enzyme-linked immunosorbent assay (LAM-ELISA), and immunoblotting to whole-cell sonicate and recombinant antigen MPB83. MAPIA and RT detected minimal to no antibody responses over those at the baseline to multiple M. bovis antigens in vaccinated white-tailed deer after challenge. This was in contrast to the presence of more readily detectable antibody responses in nonvaccinated deer with more advanced disease. The LAM-ELISA results indicated an overall decrease in the level of production of detectable antibodies against lipoarabinomannan-enriched mycobacterial antigen in vaccinated animals compared to that in nonvaccinated animals after challenge. Immunoblot data were inconsistent but did suggest the occurrence of unique antibody responses by certain vaccinated groups to Ag85 and HSP70. These findings support further research toward the improvement and potential use of antibody-based assays, such as MAPIA, RT, and LAM-ELISA, as tools for the antemortem assessment of disease progression in white-tailed deer in both experimental and field vaccine trials.


2010 ◽  
Vol 18 (2) ◽  
pp. 298-304 ◽  
Author(s):  
E. K. Hoebe ◽  
S. H. Hutajulu ◽  
J. van Beek ◽  
S. J. Stevens ◽  
D. K. Paramita ◽  
...  

ABSTRACTWHO type III nasopharyngeal carcinoma (NPC) is highly prevalent in Indonesia and 100% associated with Epstein-Barr virus (EBV). NPC tumor cells express viral proteins, including BARF1, which is secreted and is considered to have oncogenic and immune-modulating properties. Recently, we found conserved mutations in the BARF1 gene in NPC isolates. This study describes the expression and purification of NPC-derived BARF1 and analyzes humoral immune responses against prototype BARF1 (B95-8) and purified native hexameric BARF1 in sera of Indonesian NPC patients (n= 155) compared to healthy EBV-positive (n= 56) and EBV-negative (n= 16) individuals. BARF1 (B95-8) expressed inEscherichia coliand baculovirus, as well as BARF1-derived peptides, did not react with IgG or IgA antibodies in NPC. Purified native hexameric BARF1 protein isolated from culture medium was used in enzyme-linked immunosorbent assay (ELISA) and revealed relatively weak IgG and IgA responses in human sera, although it had strong antibody responses to other EBV proteins. Higher IgG reactivity was found in NPC patients (P= 0.015) than in regional Indonesian controls or EBV-negative individuals (P< 0.001). IgA responses to native BARF1 were marginal. NPC sera with the highest IgG responses to hexameric BARF1 in ELISA showed detectable reactivity with denatured BARF1 by immunoblotting. In conclusion, BARF1 has low immunogenicity for humoral responses and requires native conformation for antibody binding. The presence of antibodies against native BARF1 in the blood of NPC patients provides evidence that the protein is expressed and secreted as a hexameric protein in NPC patients.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Helen Parry ◽  
Gokhan Tut ◽  
Rachel Bruton ◽  
Sian Faustini ◽  
Christine Stephens ◽  
...  

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However, vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80–96 years at 2 weeks after the second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titers in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher, respectively, after dual vaccination. Post-vaccine sera mediated strong neutralization of live Victoria infection and although neutralization titers were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 variant of concern.


1981 ◽  
Vol 154 (2) ◽  
pp. 397-409 ◽  
Author(s):  
S L Epstein ◽  
K Ozato ◽  
J A Bluestone ◽  
D H Sachs

The idiotype of a mouse monoclonal anti-I-E antibody, 14-4-4S, has been studied using a heterologous anti-idiotypic reagent. This antibody recognizes Ia. 7, an antigenic specificity present in all strains expressing a product of the I-E subregion. Expression of the 14-4-4S idiotype in humoral immune responses was analyzed by an idiotype-specific enzyme-linked immunosorbent assay system. The idiotype was readily detectable in C3H.SW anti-C3H alloantisera, the same immunization combination from which the hybridoma was derived. Absorption analysis demonstrated the anti-I-E specificity of the idiotype-positive molecules in these alloantisera. Penetrance of idiotype expression was high among individual C3H.SW immune mice (9 of 10 tested). To examine genetic requirements for idiotype expression, an immunization was performed using as responders CWB mice, congenic with C3H.SW but differing at the heavy chain allotype loci. Immune sera of individual CWB mice contained very little or no idiotype, demonstrating that levels of idiotype expression are influenced by allotype-linked genes, although the influence of other genes has not been ruled. The 14-4-4S idiotype therefore represents a shared idiotype of anti-Ia antibodies and provides opportunities for analysis of the idiotypes of cellular receptors for the corresponding Ia antigen.


2021 ◽  
Author(s):  
Karen Colwill ◽  
Yannick Galipeau ◽  
Matthew Stuible ◽  
Christian Gervais ◽  
Corey Arnold ◽  
...  

BACKGROUND: Testing for antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable "Made-in-Canada" solution that can detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. METHODS: We developed a set of methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD), and the nucleocapsid (N) protein. These antigens are complemented by a detection antibody (human anti-IgG fused to horseradish peroxidase (HRP)) and a positive control reference antibody (recombinant IgG against the RBD), permitting intra- and inter-laboratory comparisons. Using this toolkit and commercial reagents, we optimized automated ELISAs on two different high throughput platforms to measure antibody responses to SARS-CoV-2 antigens. The assays were calibrated to a reference standard from the World Health Organization. We also automated a surrogate neutralization (sn)ELISA that measures inhibition of ACE2-Spike or -RBD interactions by antibodies using biotinylated ACE2. RESULTS: Our individual IgG-based ELISAs measure antibody levels in single-point measurements in reference to a standard antibody curve to accurately distinguish non-infected and infected individuals (area under the curve > 0.96 for each assay). Positivity thresholds can be established in individual assays using precision-recall analysis (e.g., by fixing the false positive rate), or more stringently, by scoring against the distribution of the means of negative samples across multiple assays performed over several months. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for at least 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. Here, we present detailed protocols to perform these assays using either serum/plasma or dried blood spots both manually and on two automated platforms, and to express the results in international units to facilitate data harmonization and inter-study comparisons. We also demonstrate that the snELISA can be performed automatically at single points, increasing the scalability of this functional assay for large seroprevalence studies. INTERPRETATION: The ability to measure antibodies to three viral antigens and identify neutralizing antibodies capable of disrupting spike-ACE2 interactions in high-throughput assays enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The "Made-in-Canada" set of protein reagents, produced at the National Research Council of Canada are publicly available to enable the up-scaling of standardized serological assays, permitting nationwide data comparison and aggregation.


1981 ◽  
Vol 98 (4) ◽  
pp. 506-513 ◽  
Author(s):  
Istvan Berczi ◽  
Eva Nagy ◽  
Kalman Kovacs ◽  
Eva Horvath

Abstract. Hypophysectomized female Fischer 344 and Wistar-Furth rats had severely impaired primary and secondary antibody responses to sheep red blood cells (SRBC). Mercaptoethanol-sensitive (IgM) and mercaptoethanol-resistant (IgG) antibodies were similarly affected. Titers to E. Coli 055:B5 lipopolysaccharide were also significantly decreased in such animals. The antibody response of hypophysectomized rats could be restored by syngeneic pituitary grafts when placed under the kidney capsule or by prolactin treatment. Growth hormone was less effective in this respect than prolactin. Treatment of normal rats with ACTH suppressed their antibody formation to SRBC. These results indicate that the pituitary gland has the potential to regulate humoral immune responses.


2006 ◽  
Vol 74 (4) ◽  
pp. 2043-2051 ◽  
Author(s):  
Diana Haddad ◽  
Jorge Maciel ◽  
Nirbhay Kumar

ABSTRACT An important consideration in the development of a malaria vaccine for individuals living in areas of endemicity is whether vaccine-elicited immune responses can be boosted by natural infection. To investigate this question, we used Plasmodium berghei ANKA blood-stage parasites for the infection of mice that were previously immunized with a DNA vaccine encoding the P. berghei sexual-stage antigen Pbs48/45. Intramuscular immunization in mice with one or two doses of DNA-Pbs48/45 or of empty DNA vaccine as control did not elicit detectable anti-Pbs48/45 antibodies as determined by enzyme-linked immunosorbent assay. An infection with P. berghei ANKA 6 weeks after DNA vaccination elicited comparable anti-Pbs48/45 antibody levels in mice which had been primed with DNA-Pbs48/45 or with empty DNA vaccine. However, a repeat infection with P. berghei ANKA resulted in significantly higher anti-Pbs48/45 antibody levels in mice which had been primed with the DNA-Pbs48/45 vaccine than the levels in the mock DNA-vaccinated mice. In parallel and as an additional control to distinguish the boosting of Pbs48/45 antibodies exclusively by gametocytes during infection, a separate group of mice primed with DNA-Pbs48/45 received an infection with P. berghei ANKA clone 2.33, which was previously described as a “nongametocyte producer.” To our surprise, this parasite clone too elicited antibody levels comparable to those induced by the P. berghei gametocyte producer clone. We further demonstrate that the nongametocyte producer P. berghei clone is in fact a defective gametocyte producer that expresses Pbs48/45, much like the gametocyte producer clone, and is therefore capable of boosting antibody levels to Pbs48/45. Taken together, these results indicate that vaccine-primed antibodies can be boosted during repeat infections and warrant further investigation with additional malaria antigens.


Sign in / Sign up

Export Citation Format

Share Document