scholarly journals Gram-Positive Bacteria Are Potent Inducers of Monocytic Interleukin-12 (IL-12) while Gram-Negative Bacteria Preferentially Stimulate IL-10 Production

2000 ◽  
Vol 68 (6) ◽  
pp. 3581-3586 ◽  
Author(s):  
Christina Hessle ◽  
Bengt Andersson ◽  
Agnes E. Wold

ABSTRACT Interleukin-10 (IL-10) and IL-12 are two cytokines secreted by monocytes/macrophages in response to bacterial products which have largely opposite effects on the immune system. IL-12 activates cytotoxicity and gamma interferon (IFN-γ) secretion by T cells and NK cells, whereas IL-10 inhibits these functions. In the present study, the capacities of gram-positive and gram-negative bacteria to induce IL-10 and IL-12 were compared. Monocytes from blood donors were stimulated with UV-killed bacteria from each of seven gram-positive and seven gram-negative bacterial species representing both aerobic and anaerobic commensals and pathogens. Gram-positive bacteria induced much more IL-12 than did gram-negative bacteria (median, 3,500 versus 120 pg/ml at an optimal dose of 25 bacteria/cell; P < 0.001), whereas gram-negative bacteria preferentially stimulated secretion of IL-10 (650 versus 200 pg/ml; P < 0.001). Gram-positive species also induced stronger major histocompatibility complex class II-restricted IFN-γ production in unfractionated blood mononuclear cells than did gram-negative species (12,000 versus 3,600 pg/ml; P < 0.001). The poor IL-12-inducing capacity of gram-negative bacteria was not remediated by addition of blocking anti-IL-10 antibodies to the cultures. No isolated bacterial component could be identified that mimicked the potent induction of IL-12 by whole gram-positive bacteria, whereas purified LPS induced IL-10. The results suggest that gram-positive bacteria induce a cytokine pattern that promotes Th1 effector functions.


2002 ◽  
Vol 9 (3) ◽  
pp. 649-657 ◽  
Author(s):  
D. Haller ◽  
P. Serrant ◽  
D. Granato ◽  
E. J. Schiffrin ◽  
S. Blum

ABSTRACT NK cells are instrumental in innate immune responses, in particular for the early production of gamma interferon (IFN-γ) and other cytokines necessary to control certain bacterial, parasitic, and viral infections. NK cell-mediated effector functions are controlled by a fine balance between distinct receptors mediating activating and inhibitory signals; however, little is known about activating receptors on NK cells and their corresponding ligands. Several studies have shown that commensal lactobacilli isolated from the human gastrointestinal tract activate human mononuclear cells and are potent inducers of IFN-γ and monocyte-derived interleukin 12 (IL-12). NK cell activation was shown for Lactobacillus johnsonii La1. In this study the cellular mechanisms of in vitro NK cell activation by gram-positive bacteria were analyzed. Staphylococcus aureus- and L. johnsonii La1-mediated activation of CD3− CD16+ CD56+ human peripheral blood NK cells, including expression of the activation antigen CD69 and secretion of IFN-γ, required cell contact-dependent costimulation by autologous monocytes. S. aureus- and L. johnsonii-preactivated monocytes retained their capacity to induce NK cell activation. In contrast, cytokine-primed monocytes completely failed to induce NK cell activation unless bacteria were present. This suggests that phagocytosis of bacteria provided additional coactivation signals on accessory cells that may differ from those induced by tumor necrosis factor and IFN-γ. Blocking of costimulatory molecules by B7.1, B7.2, and IL-12 but not CD14 monoclonal antibodies inhibited S. aureus- and L. johnsonii-induced effector function of NK cells. Our data suggest an important role for accessory cell-derived signals in the process of NK cell activation by gram-positive bacteria.



2014 ◽  
Vol 82 (12) ◽  
pp. 4952-4958 ◽  
Author(s):  
Marloes Vissers ◽  
Yvonne Hartman ◽  
Laszlo Groh ◽  
Dirk J. de Jong ◽  
Marien I. de Jonge ◽  
...  

ABSTRACTMatrix metallopeptidase 9 (MMP-9) is a protease involved in the degradation of extracellular matrix collagen. Evidence suggests that MMP-9 is involved in pathogenesis duringStreptococcus pneumoniaeinfection. However, not much is known about the induction of MMP-9 and the regulatory processes involved. We show here that the Gram-positive bacteria used in this study induced large amounts of MMP-9, in contrast to the Gram-negative bacteria that were used. An important pathogen-associated molecular pattern (PAMP) for Gram-positive bacteria is muramyl dipeptide (MDP). MDP is a very potent inducer of MMP-9 and showed a dose-dependent MMP-9 induction. Experiments using peripheral blood mononuclear cells (PBMCs) from Crohn's disease patients with nonfunctional NOD2 showed that MMP-9 induction byStreptococcus pneumoniaeand MDP is NOD2 dependent. Increasing amounts of lipopolysaccharide (LPS), an important PAMP for Gram-negative bacteria, resulted in decreasing amounts of MMP-9. Moreover, the induction of MMP-9 by MDP could be counteracted by simultaneously adding LPS. The inhibition of MMP-9 expression by LPS was found to be regulated posttranscriptionally, independently of tissue inhibitor of metalloproteinase 1 (TIMP-1), an endogenous inhibitor of MMP-9. Collectively, these data show thatStreptococcus pneumoniaeis able to induce large amounts of MMP-9. These high MMP-9 levels are potentially involved inStreptococcus pneumoniaepathogenesis.



2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.



2018 ◽  
Vol 84 (12) ◽  
Author(s):  
Qian Li ◽  
Manuel Montalban-Lopez ◽  
Oscar P. Kuipers

ABSTRACTLantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial compounds containing lanthionine and methyl-lanthionine residues. Nisin, one of the most extensively studied and used lantibiotics, has been shown to display very potent activity against Gram-positive bacteria, and stable resistance is rarely observed. By binding to lipid II and forming pores in the membrane, nisin can cause the efflux of cellular constituents and inhibit cell wall biosynthesis. However, the activity of nisin against Gram-negative bacteria is much lower than that against Gram-positive bacteria, mainly because lipid II is located at the inner membrane, and the rather impermeable outer membrane in Gram-negative bacteria prevents nisin from reaching lipid II. Thus, if the outer membrane-traversing efficiency of nisin could be increased, the activity against Gram-negative bacteria could, in principle, be enhanced. In this work, several relatively short peptides with activity against Gram-negative bacteria were selected from literature data to be fused as tails to the C terminus of either full or truncated nisin species. Among these, we found that one of three tails (tail 2 [T2; DKYLPRPRPV], T6 [NGVQPKY], and T8 [KIAKVALKAL]) attached to a part of nisin displayed improved activity against Gram-negative microorganisms. Next, we rationally designed and reengineered the most promising fusion peptides. Several mutants whose activity significantly outperformed that of nisin against Gram-negative pathogens were obtained. The activity of the tail 16 mutant 2 (T16m2) construct against several important Gram-negative pathogens (i.e.,Escherichia coli,Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa,Enterobacter aerogenes) was increased 4- to 12-fold compared to that of nisin. This study indicates that the rational design of nisin can selectively and significantly improve its outer membrane-permeating capacity as well as its activity against Gram-negative pathogens.IMPORTANCELantibiotics are antimicrobial peptides that are highly active against Gram-positive bacteria but that have relatively poor activity against most Gram-negative bacteria. Here, we modified the model lantibiotic nisin by fusing parts of it to antimicrobial peptides with known activity against Gram-negative bacteria. The appropriate selection of peptidic moieties that could be attached to (parts of) nisin could lead to a significant increase in its inhibitory activity against Gram-negative bacteria. Using this strategy, hybrids that outperformed nisin by displaying 4- to 12-fold higher levels of activity against relevant Gram-negative bacterial species were produced. This study shows the power of modified peptide engineering to alter target specificity in a desired direction.



Author(s):  
Venere Cortazzo ◽  
Tiziana D’Inzeo ◽  
Liliana Giordano ◽  
Giulia Menchinelli ◽  
Flora Marzia Liotti ◽  
...  

Among molecular assays currently developed for detection and identification of pathogens (and their antimicrobial resistance genes) in positive blood cultures (BCs) (1), the BioFire FilmArray blood culture identification (BCID) panel (bioMérieux, Marcy l’Étoile, France)—a multiplex PCR assay with less than 2 minutes of hands-on time and a ∼1-hour turnaround time—allows syndromic diagnosis of bloodstream infection (BSI) (2, 3). Previously, the panel could identify 24 etiological agents of BSI (11 Gram-negative bacteria, 8 Gram-positive bacteria, and 5 yeast species), as well as three antimicrobial resistance genes (mecA, vanA/B, and blaKPC, which encodes Klebsiella pneumoniae carbapenemase). Now, the BioFire FilmArray BCID2 panel encompasses 43 molecular targets associated with BSI, including 15 Gram-negative bacteria, 11 Gram-positive bacteria, 7 yeast species, and 10 antimicrobial resistance genes (https://www.biomerieux-diagnostics.com/biofire-bcid-panel). The last targets include genes encoding for carbapenemases (IMP, KPC, OXA-48-like, NDM, and VIM), colistin resistance (mcr-1), ESBL (CTX-M), methicillin-resistance (mecA/C and, specifically for methicillin-resistant Staphylococcus aureus [MRSA], mecA/C and MREJ [mec right-extremity junction]), or vancomycin resistance (vanA/B). Unlike BCID, no published studies to date reported on the BCID2 performance. This study evaluated and compared the accuracy of BCID2 with that of BCID to identify bacterial species and relative antimicrobial resistance genes directly from positive BCs.



Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.



Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.



2020 ◽  
Vol 8 (1) ◽  
pp. 122
Author(s):  
Eghbert Eghbert Elvan Eghbert Elvan Ampou ◽  
Iis Iis Triyulianti ◽  
Nuryani Widagti ◽  
Suciadi Catur Nugroho ◽  
Yuli Pancawati

Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of Research on hard coral (Scleractinian coral) contaminated with bacteria is still not much done, especially in Indonesian waters. This study took samples of coral mucus in 2010 at 3 (three) different locations, namely Bunaken (May); Morotai (September) and Raja Ampat (November), which focused on the analysis of gram-positive and gram-negative bacteria. The method used for field sampling is time swim, which is by diving at a depth of 5-10 meters for ± 30 minutes and randomly taking samples of coral mucus using siring or by taking directly on corals (reef branching). Mucus samples were analyzed by bacterial isolation in the laboratory. The result shows that there were differences between gram-positive and gram-negative bacteria in the three research sites and that gram-positive bacteria were higher or dominant. Further research that can identify the bacteria species and explain its relationship to the ecosystem is highly recommended.Keywords: Bacteria, Scleractinian coral, gram-positive and -negative, Bunaken, Morotai, Raja Ampat  AbstrakPenelitian tentang karang keras (Scleractinian coral) yang terkontaminasi bakteri masih belum banyak dilakukan, terutama di perairan Indonesia. Penelitian ini mengambil sampel mucus karang pada tahun 2010 di 3 (tiga) lokasi berbeda, yakni Bunaken (Mei); Morotai (September) dan Raja Ampat (November), yang difokuskan pada analisis bakteri gram postif dan gram negatif. Metode yang digunakan untuk pengambilan sampel di lapangan adalah time swim, yaitu dengan penyelaman pada kedalaman 5-10 meter selama ±30 menit dan mengambil sampel mucus karang secara acak menggunakan siring atau dengan mengambil langsung pada karang (fraksi cabang). Sampel mucus dianalisis dengan cara isolasi bakteri di laboratorium. Hasil analisis menunjukkan bahwa ada perbedaan antara bakteri gram positif dan gram negative di tiga lokasi survei dan bakteri gram positif lebih tinggi atau dominan. Penelitian lebih lanjut yang dapat menentukan jenis bakteri serta menjelaskan hubungannya dengan ekosistem sangat disarankan untuk dilakukan.Kata Kunci : Bakteri, Scleractinian coral, gram positif dan negatif, Bunaken, Morotai, Raja Ampat



Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 789
Author(s):  
Shih-Fu Ou ◽  
Ya-Yun Zheng ◽  
Sin-Jen Lee ◽  
Shyi-Tien Chen ◽  
Chien-Hui Wu ◽  
...  

Graphene quantum dots, carbon nanomaterials with excellent fluorescence characteristics, are advantageous for use in biological systems owing to their small size, non-toxicity, and biocompatibility. We used the hydrothermal method to prepare functional N-doped carbon quantum dots (N-CQDs) from 1,3,6-trinitropyrene and analyzed their ability to fluorescently stain various bacteria. Our results showed that N-CQDs stain the cell septa and membrane of the Gram-negative bacteria Escherichia coli, Salmonellaenteritidis, and Vibrio parahaemolyticus and the Gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. The optimal concentration of N-CQDs was approximately 500 ppm for Gram-negative bacteria and 1000 ppm for Gram-positive bacteria, and the exposure times varied with bacteria. N-Doped carbon quantum dots have better light stability and higher photobleaching resistance than the commercially available FM4-64. When excited at two different wavelengths, N-CQDs can emit light of both red and green wavelengths, making them ideal for bioimaging. They can also specifically stain Gram-positive and Gram-negative bacterial cell membranes. We developed an inexpensive, relatively easy, and bio-friendly method to synthesize an N-CQD composite. Additionally, they can serve as a universal bacterial membrane-staining dye, with better photobleaching resistance than commercial dyes.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.



Sign in / Sign up

Export Citation Format

Share Document