scholarly journals Salmonella enterica Serovars Gallinarum and Pullorum Expressing Salmonella enterica Serovar Typhimurium Type 1 Fimbriae Exhibit Increased Invasiveness for Mammalian Cells

2000 ◽  
Vol 68 (8) ◽  
pp. 4782-4785 ◽  
Author(s):  
Rebecca L. Wilson ◽  
Jessica Elthon ◽  
Steven Clegg ◽  
Bradley D. Jones

ABSTRACT Salmonella enterica serovars Gallinarum and Pullorum are S. enterica biotypes that exhibit host specificity for poultry and aquatic birds and are not normally capable of causing disease in mammalian hosts. During their evolution toward host restriction serovars Gallinarum and Pullorum lost their ability to mediate mannose-sensitive hemagglutination (MSHA), a phenotype correlated with adherence to certain cell types. Because adherence is an essential requirement for invasion of cells by bacterial pathogens, we examined whether MHSA type 1 fimbriae would increase the ability of serovars Pullorum and Gallinarum to invade normally restrictive cells. Serovars Gallinarum and Pullorum expressing S. entericaserovar Typhimurium strain LT2 type 1 fimbriae exhibited a 10- to 20-fold increased ability to adhere to and a 20- to 60-fold increased invasion efficiency of the human epithelial HEp-2 cell line. Invasion was accompanied by extensive ruffling of the membranes of the HEp-2 cells. In a murine ligated ileal loop model, a 32% increase in the number of M-cell ruffles was seen when serovar Gallinarum expressed serovar Typhimurium type 1 fimbriae.

2005 ◽  
Vol 73 (9) ◽  
pp. 6187-6190 ◽  
Author(s):  
Dagmara Kisiela ◽  
Anna Sapeta ◽  
Maciej Kuczkowski ◽  
Tadeusz Stefaniak ◽  
Alina Wieliczko ◽  
...  

ABSTRACT Recombinant FimH adhesins of type 1 fimbriae from Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum, in contrast to those of Salmonella enterica serovar Typhimurium, did not bind to high-mannose oligosaccharides or to human colon carcinoma HT-29 cells. However, mutated FimH proteins from biovar Gallinarum and biovar Pullorum, in which the isoleucine at position 78 was replaced by the threonine found in S. enterica serovar Typhimurium, bound well to glycoproteins carrying high-mannose oligosaccharides and colon carcinoma cells. The loss of sugar-binding properties by biovar Gallinarum and biovar Pullorum FimH adhesins, which are a part of the type 1 fimbriae, is most probably the result of a single T78I mutation, as was proven by site-directed mutagenesis of FimH proteins.


2007 ◽  
Vol 190 (2) ◽  
pp. 602-612 ◽  
Author(s):  
Kirsty A. McFarland ◽  
Sacha Lucchini ◽  
Jay C. D. Hinton ◽  
Charles J. Dorman

ABSTRACT The fim operon of Salmonella enterica serovar Typhimurium encodes type 1 fimbriae. The expression of fim is controlled in response to environmental signals through a complex regulatory cascade involving the proteins FimW, FimY, and FimZ and a genetic locus, fimU, that encodes a rare arginine tRNA. We discovered that a knockout mutation in lrp, the gene that codes for the leucine-responsive regulatory protein (Lrp), inhibited fim transcription. The loss of fim gene expression was accompanied by a corresponding loss of the mannose-sensitive hemagglutination that is a characteristic of type 1 fimbriae. Normal type 1 fimbrial expression was restored following the introduction into the knockout mutant of a plasmid carrying a functional copy of the lrp gene. Electrophoretic mobility shift analysis revealed no interactions between purified Lrp protein and the regulatory region of the fimA, fimU, or fimW gene. Instead, Lrp produced protein-DNA complexes with the regulatory region of the fimZ gene, and the nature of these complexes was leucine sensitive. DNase I footprinting showed that Lrp binds within a region between −65 and −170 with respect to the fimZ transcription start site, consistent with the binding and wrapping of the DNA in this upstream region. Ectopic expression of the fimZ gene from an inducible promoter caused Lrp-independent type 1 fimbriation in serovar Typhimurium. These data show that Lrp makes a positive contribution to fim gene expression through direct interaction with the fimZ promoter region, possibly by antagonizing the binding of the H-NS global repressor protein.


2003 ◽  
Vol 71 (11) ◽  
pp. 6446-6452 ◽  
Author(s):  
Carrie Althouse ◽  
Sheila Patterson ◽  
Paula Fedorka-Cray ◽  
Richard E. Isaacson

ABSTRACT Salmonella enterica serovar Typhimurium strain 798 is a clinical isolate from a pig and is known to be able to cause persistent, asymptomatic infections. This strain also is known to exist in two phenotypes (adhesive and nonadhesive to enterocytes) and can switch between the two phenotypes at a rate consistent with phase variation. Cells in the adhesive phenotype are more readily phagocytosed by leukocytes than nonadhesive cells. Once in a leukocyte, adhesive-phase cells survive while nonadhesive-phase cells die. In the present study, nonadhesive mutants were obtained with the transposon TnphoA. A nonadhesive mutant was selected for study and was shown by electron microscopy not to produce fimbriae. The gene encoding the adhesin was cloned and sequenced. Based on its sequence, the adhesin was shown to be FimA, the major subunit of type 1 fimbriae. The nonadhesive mutant was attenuated in its ability to colonize both mouse and pig intestines, but remained capable of systemic spread in mice. The nonadhesive mutant was phagocytosed to the same extent as parental cells in the adhesive phase and then survived intracellularly. These results demonstrated that type 1 fimbriae were important for attachment to enterocytes and promoted intestinal colonization. However, they were not important in promoting phagocytosis or intracellular survival.


2007 ◽  
Vol 75 (8) ◽  
pp. 3950-3960 ◽  
Author(s):  
Susan M. Paulin ◽  
Aparna Jagannathan ◽  
June Campbell ◽  
Timothy S. Wallis ◽  
Mark P. Stevens

ABSTRACTSalmonella entericais a facultative intracellular pathogen of worldwide importance and causes a spectrum of diseases depending on serovar- and host-specific factors. Oral infection of pigs withS. entericaserovar Typhimurium strain 4/74 produces acute enteritis but is rarely fatal, whereas serovar Choleraesuis strain A50 causes systemic disease with a high mortality rate. With a porcine ligated ileal loop model, we observed that systemic virulence of serovar Choleraesuis A50 is not associated with enhanced intestinal invasion, secretory responses, or neutrophil recruitment compared to serovar Typhimurium 4/74. The net growth in vivo of serovar Choleraesuis A50 and serovar Typhimurium 4/74 was monitored following oral inoculation of pigs with strains harboring pHSG422, which exhibits temperature-sensitive replication. Analysis of plasmid partitioning revealed that the enteric virulence of serovar Typhimurium 4/74 relative to that of serovar Choleraesuis A50 is associated with rapid replication in the intestinal wall, whereas systemic virulence of serovar Choleraesuis A50 is associated with enhanced persistence in intestinal mesenteric lymph nodes. Faster replication of serovar Typhimurium, compared to that of serovar Choleraesuis, in the intestinal mucosa was associated with greater induction of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-8 (IL-8), and IL-18 as detected by reverse transcriptase PCR analysis of transcripts from infected mucosa. During replication in batch culture and porcine alveolar macrophages, transcription of genes encoding components of type III secretion systems 1 (sipC) and 2 (sseC) was observed to be significantly higher in serovar Typhimurium 4/74 than in serovar Choleraesuis A50, and this may contribute to the differences in epithelial invasion and intracellular proliferation. The rapid induction of proinflammatory responses by strain 4/74 may explain why pigs confine serovar Typhimurium infection to the intestines, whereas slow replication of serovar Choleraesuis may enable it to evade host innate immunity and thus disseminate by stealth.


2012 ◽  
Vol 80 (9) ◽  
pp. 3289-3296 ◽  
Author(s):  
Sarah A. Zeiner ◽  
Brett E. Dwyer ◽  
Steven Clegg

ABSTRACTSalmonella entericaserovar Typhimurium is a Gram-negative member of the familyEnterobacteriaceaeand is a common cause of bacterial food poisoning in humans. The fimbrial appendages are found on the surface of many enteric bacteria and enable the bacteria to bind to eukaryotic cells.S. Typhimurium type 1 fimbriae are characterized by mannose-sensitive hemagglutination and are assembled via the chaperone/usher pathway.S. Typhimurium type 1 fimbrial proteins are encoded by thefimgene cluster (fimAICDHFZYW), withfimAICDHFexpressed as a single transcriptional unit. The structural components of the fimbriae are FimA (major subunit), FimI, FimH (adhesin), and FimF (adaptor). In order to determine which components are required for fimbrial formation inS. Typhimurium, mutations infimA,fimI,fimH, andfimFwere constructed and examined for their ability to produce surface-assembled fimbriae.S. Typhimurium SL1344ΔfimA, -ΔfimH, and -ΔfimFmutants were unable to assemble fimbriae, indicating that these genes are necessary for fimbrial production inS. Typhimurium. However, SL1344ΔfimIwas able to assemble fimbriae. InEscherichia colitype 1 and Pap fimbriae, at least two adaptors are expressed in addition to the adhesins. However,E. colitype 1 and Pap fimbriae have been reported to be able to assemble fimbriae in the absence of these proteins. These results suggest differences between theS. Typhimurium type 1 fimbrial system and theE. colitype 1 and Pap fimbrial systems.


Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1623-1633 ◽  
Author(s):  
Aizhen Guo ◽  
Sha Cao ◽  
Lingling Tu ◽  
Peifu Chen ◽  
Chengdong Zhang ◽  
...  

This study aimed to determine whether allelic variants of the FimH adhesin from Salmonella enterica confer differential bacterial binding to different types of mammalian cells [murine bone marrow-derived dendritic cells (DCs) and HEp-2 cells] and chicken leukocytes. Although the type 1 fimbriated S. enterica serovar Typhimurium strains AJB3 (SR-11 derivative) and SL1344 both aggregated yeast cells, only the former bound efficiently to DCs and HEp-2 cells. Type 1 fimbriae-mediated binding to DCs having previously been shown to require the FimH adhesin and to be inhibited by mannose, FimH sequences from strains SL1344 and AJB3 were compared and found to differ by only one residue, asparagine 158 in SL1344 being replaced by a tyrosine in AJB3. The importance of residue 158 for FimH-mediated binding was further confirmed in recombinant Escherichia coli expressing S. enterica type 1 fimbriae with a variety of substitutions engineered at this position. Additional studies with the ‘non-adhesive’ FimH of a type 2 fimbriated S. enterica serovar Gallinarum showed that this FimH did not mediate bacterial binding to murine DCs or HEp-2 cells. However, the type 2 FimH significantly improved bacterial adhesion to chicken leukocytes, in comparison to the type 1 FimH of strain AJB3, attributing for the first time a function to the type 2 fimbriae of S. enterica. Consequently, our data show that allelic variation of the S. enterica FimH adhesin directs not only host-cell-specific recognition, but also distinctive binding to mammalian or avian receptors. It is most relevant that this allele-specific binding profile parallels the host specificity of the respective FimH-expressing pathogen.


2007 ◽  
Vol 75 (9) ◽  
pp. 4342-4350 ◽  
Author(s):  
Manuela Raffatellu ◽  
Renato L. Santos ◽  
Daniela Chessa ◽  
R. Paul Wilson ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT The viaB locus contains genes for the biosynthesis and export of the Vi capsular antigen of Salmonella enterica serotype Typhi. Wild-type serotype Typhi induces less CXC chemokine production in tissue culture models than does an isogenic viaB mutant. Here we investigated the in vivo relevance of these observations by determining whether the presence of the viaB region prevents inflammation in two animal models of gastroenteritis. Unlike S. enterica serotype Typhimurium, serotype Typhi or a serotype Typhi viaB mutant did not elicit marked inflammatory changes in the streptomycin-pretreated mouse model. In contrast, infection of bovine ligated ileal loops with a serotype Typhi viaB mutant resulted in more fluid accumulation and higher expression of the chemokine growth-related oncogene alpha (GROα) and interleukin-17 (IL-17) than did infection with the serotype Typhi wild type. There was a marked upregulation of IL-17 expression in both the bovine ligated ileal loop model and the streptomycin-pretreated mouse model, suggesting that this cytokine is an important component of the inflammatory response to infection with Salmonella serotypes. Introduction of the cloned viaB region into serotype Typhimurium resulted in a significant reduction of GROα and IL-17 expression and in reduced fluid secretion. Our data support the idea that the viaB region plays a role in reducing intestinal inflammation in vivo.


2001 ◽  
Vol 50 (2) ◽  
pp. 191-197 ◽  
Author(s):  
PATRICK J. NAUGHTON ◽  
GEORGE GRANT ◽  
SUSAN BARDOCZ ◽  
EMMA ALLEN-VERCOE ◽  
MARTIN J. WOODWARD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document