scholarly journals Enhanced Interleukin-12 and CD40 Ligand Activities but Reduced Staphylococcus aureus Cowan 1-Induced Responses Suggest a Generalized and Progressively Impaired Type 1 Cytokine Pattern for Human Schistosomiasis

2002 ◽  
Vol 70 (11) ◽  
pp. 5903-5912 ◽  
Author(s):  
Silvia M. L. Montenegro ◽  
Frederico G. C. Abath ◽  
Ana Lúcia C. Domingues ◽  
Wlademir G. Melo ◽  
Clarice N. L. Morais ◽  
...  

ABSTRACT Whole-blood-cell cultures from schistosomiasis patients were stimulated with a variety of T-cell-dependent and T-cell-independent stimuli to determine whether the defect in type 1 cytokine expression observed following helminth infection is associated with alterations in interleukin-12 (IL-12) or CD40 ligand (CD40L) responsiveness. Cultures from uninfected individuals produced abundant gamma interferon in response to Staphylococcus aureus Cowan 1 (SAC), while patients with intestinal and hepatosplenic disease displayed intermediate and weak responses, respectively. Importantly, the decrease in type 1 cytokine expression was not attributed to defects in IL-12- or CD40L-induced activity. Indeed, schistosomiasis patients displayed heightened responses and even produced more biologically active IL-12 when stimulated with SAC and CD40L than did uninfected controls. Finally, additional studies suggested only a partial role for IL-10, since intestinal patients were the only group that overproduced this downregulatory cytokine. Together, these studies demonstrate that the type 1 deficiency in chronic hepatosplenic schistosomiasis is not related to specific defects in IL-12, IL-10, or CD40L activity, although changes in the functional status of antigen-presenting cells appear to be involved.

2002 ◽  
Vol 76 (19) ◽  
pp. 9657-9663 ◽  
Author(s):  
Palanivel Velupillai ◽  
John P. Carroll ◽  
Thomas L. Benjamin

ABSTRACT Mice of the PERA/Ei strain (PE mice) are highly susceptible to tumor induction by polyomavirus and transmit their susceptibility in a dominant manner in crosses with resistant C57BR/cdJ mice (BR mice). BR mice respond to polyomavirus infection with a type 1 cytokine response and develop effective cell-mediated immunity to the virus-induced tumors. By enumerating virus-specific CD8+ T cells and measuring cytokine responses, we show that the susceptibility of PE mice is due to the absence of a type 1 cytokine response and a concomitant failure to sustain virus-specific cytotoxic T lymphocytes. (PE × BR)F1 mice showed an initial type 1 response that became skewed toward type 2. Culture supernatants of splenocytes from infected PE mice stimulated in vitro contained high levels of interleukin-10 and no detectable gamma interferon, while those from BR mice showed the opposite pattern. Differences in the innate immune response to polyomavirus by antigen-presenting cells in PE mice and BR mice led to polarization of T-cell cytokine responses. Adherent cells from spleens of infected BR mice produced high levels of interleukin-12, while those from infected PE and F1 mice produced predominantly interleukin-10. PE and F1 mice infected by polyomavirus responded with increases in antigen-presenting cells expressing B7.2 costimulatory molecules, whereas BR mice responded with increased expression of B7.1. Administration of recombinant interleukin-12 along with virus resulted in partial protection of PE mice and provided complete protection against tumor development in F1 animals.


1999 ◽  
Vol 5 (5) ◽  
pp. 327-334 ◽  
Author(s):  
C Rohowsky-Kochan ◽  
D Molinaro ◽  
A Choudhry ◽  
M Kahn ◽  
S D Cook

Multiple sclerosis (MS), a disease of the human central nervous system, is believed to be a T cell mediated autoimmune disorder with genetic and environmental influences. Interleukin-12 (IL-12), a proinflammatory cytokine produced primarily by antigen presenting cells is a potent inducer of interferon-g (IFN-g) and other Th1 cytokines that may play an important role in MS pathogenesis. We have investigated IL-12 production induced by the T cell independent pathway in untreated and IFN-b treated MS patients, healthy individuals and other neurological disease (OND) patients in response to the human pathogen Staphylococcus aureus. We report that peripheral blood mononuclear cells (PBMC) from untreated MS patients produce normal amounts of the biologically active IL-12 p70 heterodimer but significantly less free IL-12 p40 heavy chain than PBMC from both healthy and disease controls when challenged in vitro with Staphylococcus aureus. Both mRNA expression of the inducible IL-12 p40 chain and protein levels were found to be reduced in untreated MS patients. No decrease in the production of the IL-12 p40 was seen in MS patients on IFN-b therapy. The decreased production of IL-12 p40 heavy chain is not attributed to increased IL-10 secretion, a defect in the production of cytokines by macrophages or the number of cytokine producing cells. The factor(s) responsible for the decrease in p40 remain to be determined. Since IL-12 p40 antagonizes the biological activity of IL-12 in vitro and in vivo, identification of a defect in the `natural' antagonist of IL-12, may provide the basis for immune therapy.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 383-390 ◽  
Author(s):  
Pilar Martı́n ◽  
Gloria Martı́nez del Hoyo ◽  
Fabienne Anjuère ◽  
Cristina Fernández Arias ◽  
Héctor Hernández Vargas ◽  
...  

Abstract We describe a new B220+ subpopulation of immaturelike dendritic cells (B220+ DCs) with low levels of expression of major histocompatibility complex (MHC) and costimulatory molecules and markedly reduced T-cell stimulatory potential, located in the thymus, bone marrow, spleen, and lymph nodes. B220+ DCs display ultrastructural characteristics resembling those of human plasmacytoid cells and accordingly produce interferon-α after virus stimulation. B220+ DCs acquired a strong antigen-presenting cell capacity on incubation with CpG oligodeoxynucleotides, concomitant with a remarkable up-regulation of MHC and costimulatory molecules and the production of interleukin-12 (IL-12) and IL-10. Importantly, our data suggest that nonstimulated B220+ DCs represent a subset of physiological tolerogenic DCs endowed with the capacity to induce a nonanergic state of T-cell unresponsiveness, involving the differentiation of T regulatory cells capable of suppressing antigen-specific T-cell proliferation. In conclusion, our data support the hypothesis that B220+ DCs represent a lymphoid organ subset of immature DCs with a dual role in the immune system—exerting a tolerogenic function in steady state but differentiating on microbial stimulation into potent antigen-presenting cells with type 1 interferon production capacity.


2001 ◽  
Vol 194 (8) ◽  
pp. 1021-1032 ◽  
Author(s):  
Raelene Grumont ◽  
Hubertus Hochrein ◽  
Meredith O'Keeffe ◽  
Raffi Gugasyan ◽  
Christine White ◽  
...  

Interleukin 12 (IL-12) is a 70-kD proinflammatory cytokine produced by antigen presenting cells that is essential for the induction of T helper type 1 development. It comprises 35-kD (p35) and 40-kD (p40) polypeptides encoded by separate genes that are induced by a range of stimuli that include lipopolysaccharide (LPS), DNA, and CD40 ligand. To date, the regulation of IL-12 expression at the transcriptional level has mainly been examined in macrophages and restricted almost exclusively to the p40 gene. Here we show that in CD8+ dendritic cells, major producers of IL-12 p70, the Rel/nuclear factor (NF)-κB signaling pathway is necessary for the induction of IL-12 in response to microbial stimuli. In contrast to macrophages which require c-Rel for p40 transcription, in CD8+ dendritic cells, the induced expression of p35 rather than p40 by inactivated Staphylococcus aureus, DNA, or LPS is c-Rel dependent and regulated directly by c-Rel complexes binding to the p35 promoter. This data establishes the IL-12 p35 gene as a new target of c-Rel and shows that the regulation of IL-12 p70 expression at the transcriptional level by Rel/NF-κB is controlled through both the p35 and p40 genes in a cell type–specific fashion.


2004 ◽  
Vol 32 (4) ◽  
pp. 629-632 ◽  
Author(s):  
T. Lehner ◽  
Y. Wang ◽  
T. Whittall ◽  
E. McGowan ◽  
C.G. Kelly ◽  
...  

Microbial HSP70 (heat-shock protein 70) consists of three functionally distinct domains: an N-terminal 44 kDa ATPase portion (amino acids 1–358), followed by an 18 kDa peptide-binding domain (amino acids 359–494) and a C-terminal 10 kDa fragment (amino acids 495–609). Immunological functions of these three different domains in stimulating monocytes and dendritic cells have not been fully defined. However, the C-terminal portion (amino acids 359–610) stimulates the production of CC chemokines, IL-12 (interleukin-12), TNFα(tumour necrosis factor α), NO and maturation of dendritic cells and also functions as an adjuvant in the induction of immune responses. In contrast, the ATPase domain of microbial HSP70 mostly lacks these functions. Since the receptor for HSP70 is CD40, which with its CD40 ligand constitutes a major co-stimulatory pathway in the interaction between antigen-presenting cells and T-cells, HSP70 may function as an alternative ligand to CD40L. HSP70–CD40 interaction has been demonstrated in non-human primates to play a role in HIV infection, in protection against Mycobacterium tuberculosis and in conversion of tolerance to immunity.


Diabetes ◽  
2006 ◽  
Vol 55 (7) ◽  
pp. 2098-2105 ◽  
Author(s):  
P. Alard ◽  
J. N. Manirarora ◽  
S. A. Parnell ◽  
J. L. Hudkins ◽  
S. L. Clark ◽  
...  

1999 ◽  
Vol 190 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Leo Lefrançois ◽  
Sara Olson ◽  
David Masopust

The role of CD40 ligand (CD40L) in CD8 T cell activation was assessed by tracking antigen-specific T cells in vivo using both adoptive transfer of T cell receptor transgenic T cells and major histocompatibility complex (MHC) class I tetramers. Soluble antigen immunization induced entry of CD8 cells into the intestinal mucosa and cytotoxic T lymphocyte (CTL) differentiation, whereas CD8 cells in secondary lymphoid tissue proliferated but were not cytolytic. Immunization concurrent with CD40L blockade or in the absence of CD40 demonstrated that accumulation of CD8 T cells in the mucosa was CD40L dependent. Furthermore, activation was mediated through CD40L expressed by the CD8 cells, since inhibition by anti-CD40L monoclonal antibodies occurred after adoptive transfer to CD40L-deficient mice. However, mucosal CD8 T cells in normal and CD40−/− mice were equivalent killers, indicating that CD40L was not required for CTL differentiation. Appearance of virus-specific mucosal, but not splenic, CD8 cells also relied heavily on CD40–CD40L interactions. The mucosal CTL response of transferred CD8 T cells was MHC class II and interleukin 12 independent. The results established a novel pathway of direct CD40L-mediated CD8 T cell activation.


Sign in / Sign up

Export Citation Format

Share Document