scholarly journals Influence of the Alternative σ28 Factor on Virulence and Flagellum Expression of Legionella pneumophila

2002 ◽  
Vol 70 (3) ◽  
pp. 1604-1608 ◽  
Author(s):  
Klaus Heuner ◽  
Claudia Dietrich ◽  
Carina Skriwan ◽  
Michael Steinert ◽  
Jörg Hacker

ABSTRACT The fliA gene of Legionella pneumophila encoding the alternative σ28 factor was inactivated by introducing a kanamycin resistance cassette. Electron microscopy and Western blot analysis revealed that the fliA mutant strain is aflagellate and expresses no flagellin. Reporter gene assays indicated that the flaA promoter is not active in the fliA mutant strain. The fliA mutant strain multiplied less effectively in coculture with amoebae than the wild-type strain and was not able to replicate in coculture with Dictyostelium discoideum.

2002 ◽  
Vol 46 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Ofelia Chacon ◽  
Zhengyu Feng ◽  
N. Beth Harris ◽  
Nancy E. Cáceres ◽  
L. Garry Adams ◽  
...  

ABSTRACT Mycobacterium smegmatis is a fast-growing nonpathogenic species particularly useful in studying basic cellular processes of relevance to pathogenic mycobacteria. This study focused on the d-alanine racemase gene (alrA), which is involved in the synthesis of d-alanine, a basic component of peptidoglycan that forms the backbone of the cell wall. M. smegmatis alrA null mutants were generated by homologous recombination using a kanamycin resistance marker for insertional inactivation. Mutants were selected on Middlebrook medium supplemented with 50 mM d-alanine and 20 μg of kanamycin per ml. These mutants were also able to grow in standard and minimal media without d-alanine, giving rise to colonies with a drier appearance and more-raised borders than the wild-type strain. The viability of the mutants and independence of d-alanine for growth indicate that inactivation of alrA does not impose an auxotrophic requirement for d-alanine, suggesting the existence of a new pathway of d-alanine biosynthesis in M. smegmatis. Biochemical analysis demonstrated the absence of any detectable d-alanine racemase activity in the mutant strains. In addition, the alrA mutants displayed hypersusceptibility to the antimycobacterial agent d-cycloserine. The MIC of d-cycloserine for the mutant strain was 2.56 μg/ml, 30-fold less than that for the wild-type strain. Furthermore, this hypersusceptibility was confirmed by the bactericidal action of d-cycloserine on broth cultures. The kinetic of killing for the mutant strain followed the same pattern as that for the wild-type strain, but at a 30-fold-lower drug concentration. This effect does not involve a change in the permeability of the cell wall by this drug and is consistent with the identification of d-alanine racemase as a target of d-cycloserine. This outcome is of importance for the design of novel antituberculosis drugs targeting peptidoglycan biosynthesis in mycobacteria.


2002 ◽  
Vol 184 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Ange-Patricia Tchamedeu Kameni ◽  
Evelyne Couture-Tosi ◽  
Isabelle Saint-Girons ◽  
Mathieu Picardeau

ABSTRACT Recently, we have shown the first evidence for allelic exchange in Leptospira spp. By using the same methodology, the cloned recA of Leptospira biflexa was interrupted by a kanamycin resistance cassette, and the mutated allele was then introduced into the L. biflexa chromosome by homologous recombination. The recA double-crossover mutant showed poor growth in liquid media and was considerably more sensitive to DNA-damaging agents such as mitomycin C and UV light than the wild-type strain. The efficiency of plating of the recA mutant was about 10% of that of the parent strain. In addition, microscopic observation of the L. biflexa recA mutant showed cells that are more elongated than those of the wild-type strain. Fluorescent microscopy of stained cells of the L. biflexa wild-type strain revealed that chromosomal DNA is distributed throughout most of the length of the cell. In contrast, the recA mutant showed aberrant nucleoid morphologies, i.e., DNA is condensed at the midcell. Our data indicate that L. biflexa RecA plays a major role in ensuring cell viability via mechanisms such as DNA repair and, indirectly, active chromosome partitioning.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2020 ◽  
Author(s):  
Changle Zhao ◽  
Yinping Wan ◽  
Xiaojie Cao ◽  
Huili Zhang ◽  
Xin Bao

Abstract Background The microbial synthesis of pyrroloquinoline quinone (PQQ) and Coenzyme Q10 (CoQ10) remains the most promising industrial production route. Methylobacterium has been used to generate PQQ and other value-added chemicals from cheap carbon feedstocks.However, the low PQQ and CoQ10 production capacity of the Methylobacterium strains is a major limitation The regulation mechanism for PQQ and CoQ10 biosynthesis in this strain has also not been fully elucidated. Results Methylobacterium sp. CLZ strain was isolated from soil contaminated with chemical wastewater, which can simultaneously produce PQQ, CoQ10, and carotenoids by using cheap methanol as carbon source. We investigated a mutant strain NI91, which increased the PQQ and CoQ10 yield by 72.44% and 59.80%, respectively. Whole-genome sequencing of NI91 and wild-type strain CLZ revealed that both contain a 5.28 Mb chromosome. The comparative genomic analysis and validation study revealed that a significant increase in biomass and PQQ production was associated with the base mutations in the methanol dehydrogenase (MDH) synthesis genes, mxaD and mxaJ. The significant increase in CoQ10 production may be associated with the base mutations in dxs gene, a key gene in the MEP/DOXP pathway. Conclusions A PQQ producing strain that simultaneously produces CoQ10 and carotenoids was selected and after ANI analysis, named as Methylobacterium sp. CLZ. After random mutagenesis of this strain, we obtained NI91 strain, which showed increased production of PQQ and CoQ10. Based on comparative genomic analysis of the whole genome of mutant strain NI91 and wild-type strain CLZ, a total of 270 SNPs and InDels events were detected, which provided a reference for subsequent research. The mutations in mxaD, mxaJ and dxs genes may be related to the high yield of PQQ and CoQ10. These findings will enhance our understanding of the PQQ and CoQ10 over-production mechanism in Methylobacterium sp. NI91 at the genomic level. It will also provide useful clues for strain engineering in order to improve the PQQ and CoQ10 production.


2016 ◽  
Vol 6 (12) ◽  
pp. 3883-3892 ◽  
Author(s):  
Haruhisha Suga ◽  
Koji Kageyama ◽  
Masafumi Shimizu ◽  
Misturo Hyakumachi

Abstract Members of the Fusarium graminearum species complex (Fg complex or FGSC) are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022) was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.


2001 ◽  
Vol 69 (4) ◽  
pp. 2116-2122 ◽  
Author(s):  
Claudia Dietrich ◽  
Klaus Heuner ◽  
Bettina C. Brand ◽  
Jörg Hacker ◽  
Michael Steinert

ABSTRACT Legionella pneumophila, the etiologic agent of Legionnaires' disease, contains a single, monopolar flagellum which is composed of one major subunit, the FlaA protein. To evaluate the role of the flagellum in the pathogenesis and ecology ofLegionella, the flaA gene of L. pneumophila Corby was mutagenized by introduction of a kanamycin resistance cassette. Immunoblots with antiflagellin-specific polyclonal antiserum, electron microscopy, and motility assays confirmed that the specific flagellar mutant L. pneumophila Corby KH3 was nonflagellated. The redelivery of the intact flaA gene into the chromosome (L. pneumophila Corby CD10) completely restored flagellation and motility. Coculture studies showed that the invasion efficiency of the flaA mutant was moderately reduced in amoebae and severely reduced in HL-60 cells. In contrast, adhesion and the intracellular rate of replication remained unaffected. Taking these results together, we have demonstrated that the flagellum of L. pneumophila positively affects the establishment of infection by facilitating the encounter of the host cell as well as by enhancing the invasion capacity.


2000 ◽  
Vol 182 (23) ◽  
pp. 6698-6706 ◽  
Author(s):  
Chunhao Li ◽  
Linda Corum ◽  
David Morgan ◽  
Everett L. Rosey ◽  
Thaddeus B. Stanton ◽  
...  

ABSTRACT Spirochete periplasmic flagella (PFs), including those fromBrachyspira (Serpulina),Spirochaeta, Treponema, andLeptospira spp., have a unique structure. In most spirochete species, the periplasmic flagellar filaments consist of a core of at least three proteins (FlaB1, FlaB2, and FlaB3) and a sheath protein (FlaA). Each of these proteins is encoded by a separate gene. Using Brachyspira hyodysenteriae as a model system for analyzing PF function by allelic exchange mutagenesis, we analyzed purified PFs from previously constructedflaA::cat,flaA::kan, andflaB1::kan mutants and newly constructed flaB2::cat andflaB3::cat mutants. We investigated whether any of these mutants had a loss of motility and altered PF structure. As formerly found withflaA::cat,flaA::kan, andflaB1::kan mutants,flaB2::cat andflaB3::cat mutants were still motile, but all were less motile than the wild-type strain, using a swarm-plate assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis indicated that each mutation resulted in the specific loss of the cognate gene product in the assembled purified PFs. Consistent with these results, Northern blot analysis indicated that each flagellar filament gene was monocistronic. In contrast to previous results that analyzed PFs attached to disrupted cells, purified PFs from a flaA::cat mutant were significantly thinner (19.6 nm) than those of the wild-type strain and flaB1::kan,flaB2::cat, andflaB3::cat mutants (24 to 25 nm). These results provide supportive genetic evidence that FlaA forms a sheath around the FlaB core. Using high-magnification dark-field microscopy, we also found thatflaA::cat andflaA::kan mutants produced PFs with a smaller helix pitch and helix diameter compared to the wild-type strain and flaB mutants. These results indicate that the interaction of FlaA with the FlaB core impacts periplasmic flagellar helical morphology.


2000 ◽  
Vol 182 (24) ◽  
pp. 6964-6974 ◽  
Author(s):  
Erika Hild ◽  
Kathy Takayama ◽  
Rose-Marie Olsson ◽  
Staffan Kjelleberg

ABSTRACT We report the cloning, sequencing, and characterization of therpoE homolog in Vibrio angustum S14. TherpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, ς24, displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40°C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30°C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30°C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14.


Sign in / Sign up

Export Citation Format

Share Document