scholarly journals Pertussis Toxin Plays an Early Role in Respiratory Tract Colonization by Bordetella pertussis

2003 ◽  
Vol 71 (11) ◽  
pp. 6358-6366 ◽  
Author(s):  
Nicholas H. Carbonetti ◽  
Galina V. Artamonova ◽  
R. Michael Mays ◽  
Zoe E. V. Worthington

ABSTRACT In this study, we sought to determine whether pertussis toxin (PT), an exotoxin virulence factor produced exclusively by Bordetella pertussis, is important for colonization of the respiratory tract by this pathogen by using a mouse intranasal infection model. By comparing a wild-type Tohama I strain to a mutant strain with an in-frame deletion of the ptx genes encoding PT (ΔPT), we found that the lack of PT confers a significant peak (day 7) colonization defect (1 to 2 log10 units) over a range of bacterial inoculum doses and that this defect was apparent within 1 to 2 days postinoculation. In mixed-strain infection experiments, the ΔPT strain showed no competitive disadvantage versus the wild-type strain and colonized at higher levels than in the single-strain infection experiments. To test the hypothesis that soluble PT produced by the wild-type strain in mixed infections enhanced respiratory tract colonization by ΔPT, we coadministered purified PT with the ΔPT inoculum and found that colonization was increased to wild-type levels. This effect was not observed when PT was coadministered via a systemic route. Intranasal administration of purified PT up to 14 days prior to inoculation with ΔPT significantly increased bacterial colonization, but PT administration 1 day after bacterial inoculation did not enhance colonization versus a phosphate-buffered saline control. Analysis of bronchoalveolar lavage fluid samples from mice infected with either wild-type or ΔPT strains at early times after infection revealed that neutrophil influx to the lungs 48 h postinfection was significantly greater in response to ΔPT infection, implicating neutrophil chemotaxis as a possible target of PT activity promoting B. pertussis colonization of the respiratory tract.

2005 ◽  
Vol 73 (5) ◽  
pp. 2698-2703 ◽  
Author(s):  
Nicholas H. Carbonetti ◽  
Galina V. Artamonova ◽  
Charlotte Andreasen ◽  
Nicholas Bushar

ABSTRACT Previously we found that pertussis toxin (PT), an exotoxin virulence factor produced by Bordetella pertussis, plays an important early role in colonization of the respiratory tract by this pathogen, using a mouse intranasal infection model. In this study, we examined the early role played by another exotoxin produced by this pathogen, adenylate cyclase toxin (ACT). By comparing a wild-type strain to a mutant strain (ΔCYA) with an in-frame deletion of the cyaA gene encoding ACT, we found that the lack of ACT confers a significant peak (day 7) colonization defect (1 to 2 log10). In mixed-infection experiments, the ΔCYA strain was significantly outcompeted by the wild-type strain, and intranasal administration of purified ACT did not increase colonization by ΔCYA. These data suggest that ACT benefits the bacterial cells that produce it and, unlike PT, does not act as a soluble factor benefiting the entire infecting bacterial population. Comparison of lower respiratory tract infections over the first 4 days after inoculation revealed that the colonization defect of the PT deletion strain was apparent earlier than that of ΔCYA, suggesting that PT plays an earlier role than ACT in the establishment of B. pertussis infection. Examination of cells in the bronchoalveolar lavage fluid of infected mice revealed that, unlike PT, ACT does not appear to inhibit neutrophil influx to the respiratory tract early after infection but may combat neutrophil activity once influx has occurred.


2000 ◽  
Vol 68 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Christine L. Weingart ◽  
Alison A. Weiss

ABSTRACT The interaction between human neutrophils and wild-typeBordetella pertussis or mutants expressing altered lipopolysaccharide or lacking virulence factors—pertussis toxin, adenylate cyclase toxin, dermonecrotic toxin, filamentous hemagglutinin (FHA), pertactin, or BrkA—was examined. In the absence of antibodies, the wild-type strain and the mutants, with the exception of mutants lacking FHA, attached efficiently to neutrophils. The addition of opsonizing antibodies caused a significant reduction (approximately 50%) in attachment of the wild-type strain and most of the mutants expressing FHA, suggesting that bacterium-mediated attachment is more efficient than Fc-mediated attachment. Phagocytosis was also examined. In the absence of antibodies, about 12% of the wild-type bacteria were phagocytosed. Opsonization caused a statistically significant reduction in phagocytosis (to 3%), possibly a consequence of reduced attachment. Phagocytosis of most of the mutants was similar to that of the wild type, with the exception of the mutants lacking adenylate cyclase toxin. About 70% of the adenylate cyclase toxin mutants were phagocytosed, but only in the presence of opsonizing antibody, suggesting that Fc receptor-mediated signaling may be needed for phagocytosis. These studies indicate that FHA mediates attachment ofB. pertussis to neutrophils, but adenylate cyclase toxin blocks phagocytosis.


2005 ◽  
Vol 73 (2) ◽  
pp. 748-760 ◽  
Author(s):  
Nuria Vergara-Irigaray ◽  
Alberto Chávarri-Martínez ◽  
Juan Rodríguez-Cuesta ◽  
Jeff F. Miller ◽  
Peggy A. Cotter ◽  
...  

ABSTRACT The BvgAS system of Bordetella pertussis was traditionally considered to mediate a transition between two phenotypic phases (Bvg+ and Bvg−) in response to environmental signals. We characterized a third state, the intermediate (Bvgi) phase, which can be induced by introducing a 1-bp substitution into bvgS (the bvgS-I1 mutation) or by growing B. pertussis under conditions intermediate between those leading to the Bvg+ and Bvg− phases. Like B. bronchiseptica, B. pertussis displays in its Bvgi phase a characteristic colony morphology and hemolytic activity and expresses a Bvgi-phase-specific polypeptide called BipA, whose synthesis is regulated by bvgAS at the transcriptional level. Based on our results, we hypothesize that the Bvgi phase of B. pertussis may be involved in facilitating transmission between hosts. Thus, a B. pertussis mutant carrying the bvgS-I1 mutation (GMT1i) persisted at wild-type levels only in the upper murine respiratory tract. Interestingly, a bipA deletion derivative of GMT1i displayed a reduced ability to colonize the nasal cavity of mice compared with GMT1i. However, in experimental mixed infections GMT1i expressing the Bvgi phase could establish an initial colonization in the nose and trachea of mice as efficiently as GMT1, but the wild-type strain outcompeted GMT1i at a later time point at all sites of the respiratory tract, suggesting that the Bvgi phase does not serve as a phenotypic phase specialized in colonization. Finally, even though B. pertussis expresses in vitro the Bvgi phase at the human nasal temperature, anti-BipA antibodies were undetectable in a large collection of sera from pertussis patients.


2000 ◽  
Vol 68 (3) ◽  
pp. 1535-1541 ◽  
Author(s):  
C. A. Ginns ◽  
M. L. Benham ◽  
L. M. Adams ◽  
K. G. Whithear ◽  
K. A. Bettelheim ◽  
...  

ABSTRACT The E3 strain of E. coli was isolated in an outbreak of respiratory disease in broiler chickens, and experimental aerosol exposure of chickens to this strain induced disease similar to that seen in the field. In order to establish whether the virulent phenotype of this strain was associated with carriage of particular plasmids, four plasmid-cured derivatives, each lacking two or more of the plasmids carried by the wild-type strain, were assessed for virulence. Virulence was found to be associated with one large plasmid, pVM01. Plasmid pVM01 was marked by introduction of the transposon TnphoA, carrying kanamycin resistance, and was then cloned by transformation of E. coli strain DH5α. The cloned plasmid was then reintroduced by conjugation into an avirulent plasmid-cured derivative of strain E3 which lacked pVM01. The conjugant was shown to be as virulent as the wild-type strain E3, establishing that this plasmid is required for virulence following aerosol exposure. This virulence plasmid conferred expression of a hydroxamate siderophore, but not colicins, on both strain E3 and strain DH5α. Carriage of this plasmid was required for strain E3 to colonize the respiratory tracts of chickens but was not necessary for colonization of the gastrointestinal tract. However, the virulence plasmid did not confer virulence, or the capacity to colonize the respiratory tract, on strain DH5α. Thus, these studies have established that infection of chickens with E. coli strain E3 by the respiratory route is dependent on carriage of a conjugative virulence plasmid, which confers the capacity to colonize specifically the respiratory tract and which also carries genes for expression of a hydroxymate siderophore. These findings will facilitate identification of the specific genes required for virulence in these pathogens.


1999 ◽  
Vol 67 (3) ◽  
pp. 1424-1431 ◽  
Author(s):  
Alison A. Weiss ◽  
Paula S. Mobberley ◽  
Rachel C. Fernandez ◽  
ChrisAnna M. Mink

ABSTRACT The Bordetella pertussis BrkA protein protects against the bactericidal activity of complement and antibody; however, some individuals mount an immune response that overcomes this bacterial defense. To further characterize this process, the bactericidal activities of sera from 13 adults with different modes of exposure toB. pertussis (infected as adults, occupational exposure, immunized with an acellular vaccine, or no identified exposure) against a wild-type strain and a BrkA complement-sensitive mutant were evaluated. All of the sera killed the BrkA mutant, suggesting past exposure to B. pertussis or cross-reactive organisms. Several samples had no or minimal activity against the wild type. All of the sera collected from the infected and occupationally exposed individuals but not all of the sera from vaccinated individuals had bactericidal activity against the wild-type strain, suggesting that some types of exposure can induce an immune response that can overcome the BrkA resistance mechanism. Adsorbing serum with the wild-type strain removed the bactericidal antibodies; however, adsorbing the serum with a lipopolysaccharide (LPS) mutant or an avirulent (bvg mutant) strain did not always result in loss of bactericidal activity, suggesting that antibodies to either LPS orbvg-regulated proteins could be bactericidal. All the samples, including those that lacked bactericidal activity, contained antibodies that recognized the LPS of B. pertussis. Bactericidal activity correlated best with the presence of the immunoglobulin G3 (IgG3) antibodies to LPS, the IgG subtype that is most effective at fixing complement.


2006 ◽  
Vol 74 (3) ◽  
pp. 1741-1744 ◽  
Author(s):  
Timothy J. Brickman ◽  
Carin K. Vanderpool ◽  
Sandra K. Armstrong

ABSTRACT Bordetella pertussis, the causative agent of whooping cough or pertussis, is an obligate human pathogen with multiple high-affinity iron transport systems. Maximal expression of the dedicated heme utilization functions encoded by the hurIR bhuRSTUV genes requires an iron starvation signal to relieve Fur repression at the hurIR promoter-operator and an inducing signal supplied by heme for HurI-mediated transcriptional activation at the bhuRSTUV promoter. The BhuR outer membrane receptor protein is required for heme uptake and for heme sensing for induction of bhuRSTUV transcription. It was hypothesized that heme utilization contributed to the success of B. pertussis as a pathogen. In this study, virulence attenuation resulting from inactivation of the B. pertussis heme system was assessed using mixed infection competition experiments in a mouse model. As a measure of in vivo fitness, the ability of a B. pertussis heme utilization mutant to colonize and persist was determined relative to that of an isogenic coinfecting wild-type strain. Relative fitness of the mutant strain declined significantly after 7 days postinfection and continued to decline throughout the remainder of the 28-day infection time course. In parallel infections using inocula supplemented with an inducing 2 μM concentration of hemin chloride, hemin coadministration augmented the competitive advantage of the wild-type strain over the mutant. The results confirm that heme utilization contributes to the pathogenesis of B. pertussis in the mouse infection model and indicate that heme utilization may be most important for adaptation to host conditions existing during the later stages of infection.


2000 ◽  
Vol 68 (12) ◽  
pp. 7152-7155 ◽  
Author(s):  
Christine L. Weingart ◽  
Paula S. Mobberley-Schuman ◽  
Erik L. Hewlett ◽  
Mary C. Gray ◽  
Alison A. Weiss

ABSTRACT A previous study showed that opsonization with human immune serum could either promote or antagonize phagocytosis of Bordetella pertussis by human neutrophils depending on whether the bacteria expressed adenylate cyclase toxin. Opsonization of the wild-type strain inhibited phagocytosis relative to unopsonized controls. In contrast, mutants lacking adenylate cyclase toxin were efficiently phagocytosed when opsonized with human immune serum. In this study, we examined opsonization in the presence or absence of monoclonal antibodies to adenylate cyclase toxin. Addition of neutralizing monoclonal antibodies to adenylate cyclase toxin converted a serum that previously inhibited both attachment and phagocytosis of the wild-type strain to one that increased both attachment and phagocytosis compared to the no-serum control. Monoclonal antibodies that recognize the adenylate cyclase toxin but fail to neutralize activity were without effect. These results suggest that adenylate cyclase toxin inhibits both Fc receptor-mediated attachment and phagocytosis of B. pertussis by neutrophils.


2000 ◽  
Vol 68 (3) ◽  
pp. 1276-1281 ◽  
Author(s):  
Kathleen A. Craig-Mylius ◽  
Trevor H. Stenson ◽  
Alison A. Weiss

ABSTRACT Pertussis toxin is a member of the AB5 family of toxins and is composed of five subunits (S1 to S5) present in a 1:1:1:2:1 ratio. Secretion is a complex process. Each subunit has a secretion signal that mediates transport to the periplasm, where processing and assembly occur. Secretion of the assembled 105-kDa toxin past the outer membrane is mediated by the nine proteins encoded in theptl operon. Previous studies have shown that S1, the catalytically active A subunit of pertussis toxin, is necessary for efficient secretion, suggesting that a domain on S1 may be required for interaction with the secretion apparatus. Previously, recombinant S1 from four different mutants (serine 54 to glycine, serine 55 to glycine, serine 56 to glycine, and arginine 57 to lysine) was shown to retain catalytic activity. We introduced these mutations intoBordetella pertussis and monitored pertussis toxin production and secretion. No pertussis toxin was detected in the serine 54-to-glycine mutant. The other S1 mutants produced periplasmic pertussis toxin, but little pertussis toxin secretion was observed. The arginine 57-to-lysine mutant had the most dramatic secretion defect. It produced wild-type levels of periplasmic pertussis toxin but secreted only 8% as much toxin as the wild-type strain. This phenotype was similar to that observed for strains with mutations in theptl genes, suggesting that this region may have a role in pertussis toxin secretion.


2004 ◽  
Vol 72 (6) ◽  
pp. 3350-3358 ◽  
Author(s):  
Nicholas H. Carbonetti ◽  
Galina V. Artamonova ◽  
Charlotte Andreasen ◽  
Edward Dudley ◽  
R. Michael Mays ◽  
...  

ABSTRACT Pertussis toxin (PT), a virulence factor secreted by Bordetella pertussis, contributes to respiratory tract infection and disease caused by this pathogen. By comparing a wild-type (WT) B. pertussis strain to a mutant strain with an in-frame deletion of the ptx genes encoding PT (ΔPT), we recently found that the lack of PT confers a significant defect in respiratory tract colonization in mice after intranasal inoculation. In this study, we analyzed serum antibody responses in mice infected with the WT or ΔPT strain and found that infection with the ΔPT strain elicited greater responses to several B. pertussis antigens than did infection with the WT, despite the lower colonization level achieved by the ΔPT strain. The same enhanced antibody response was observed after infection with a strain expressing an enzymatically inactive PT; but this response was not observed after infection with B. pertussis mutant strains lacking filamentous hemagglutinin or adenylate cyclase toxin, nor when purified PT was administered with the ΔPT inoculum, indicating a specific role for PT activity in this immunosuppressive effect. In particular, there were consistent strong serum antibody responses to one or more low-molecular-weight antigens after infection with the ΔPT strain. These antigens were Bvg independent, membrane localized, and also expressed by the closely related pathogens Bordetella parapertussis and Bordetella bronchiseptica. Two-dimensional gel electrophoresis and mass spectrometry were used to identify one of the immunodominant low-molecular-weight antigens as a protein with significant sequence homology to peptidoglycan-associated lipoprotein in several other gram-negative bacterial species. However, a serum antibody response to this protein alone did not protect mice against respiratory tract infection by B. pertussis.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document