scholarly journals Investigation of the Role of CD8+ T Cells in Bovine Tuberculosis In Vivo

2003 ◽  
Vol 71 (8) ◽  
pp. 4297-4303 ◽  
Author(s):  
B. Villarreal-Ramos ◽  
M. McAulay ◽  
V. Chance ◽  
M. Martin ◽  
J. Morgan ◽  
...  

ABSTRACT Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), and it has the potential to induce disease in humans. CD8+ T cells (CD8 cells) have been shown to respond to mycobacterial antigens in humans, cattle, and mice. In mice, CD8 cells have been shown to play a role in protection against mycobacterial infection. To determine the role of CD8 cells in bovine TB in vivo, two groups of calves were infected with the virulent M. bovis strain AF2122/97. After infection, one group was injected with a CD8 cell-depleting monoclonal antibody (MAb), and the other group was injected with an isotype control MAb. Immune responses to mycobacterial antigens were measured weekly in vitro. After 8 weeks, the animals were killed, and postmortem examinations were carried out. In vitro proliferation responses were similar in both calf groups, but in vitro gamma interferon (IFN-γ) production in 24-h whole-blood cultures was significantly higher in control cattle than in CD8 cell-depleted calves. Postmortem examination showed that calves in both groups had developed comparable TB lesions in the lower respiratory tract and associated lymph nodes. Head lymph node lesion scores, on the other hand, were higher in control calves than in CD8 cell-depleted calves. Furthermore, there was significant correlation between the level of IFN-γ and the head lymph node lesion score. These experiments indicate that CD8 cells play a role in the immune response to M. bovis in cattle by contributing to the IFN-γ response. However, CD8 cells may also play a deleterious role by contributing to the immunopathology of bovine TB.

In several species of anurans, the in vivo skin has been shown to absorb Na + and Cl - independently from dilute external solutions. That the mechanism for sodium absorption is different from that of chloride absroption is born out by the following: (1) Either of these ions is absorbed without an accompanying ion when this latter is impermeant. (2) From NaCl solutions there can be an unequal absorption of sodium and chloride. (3) A selective inhibition of the absorption of one of the ions can be produced experimentally, while the net flux of the other remains unchanged. In all these situations, the absorbed ion has to be exchanged against an endogenous ion of the same charge. In Calyptocephalella gayi , H + and HCO - 3 are exchanged against sodium and chloride respectively. A comparison of the relationships between H + excretion and Na + absorption in vivo skins and shortcircuited in vitro skins shows that in the latter no H + excretion occurs, only the Na + transport being maintained under these experimental conditions. From this, one must conclude that the active Na + transport is the motive factor of the transport mechanism. H + excretion by the in vivo skin plays the role of physiologically short-circuiting the Na + transport.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2346-2346
Author(s):  
Barry R Flutter ◽  
Farnaz Fallah-Arani ◽  
Clare Bennett ◽  
Janani Sivakumaran ◽  
Gordon J Freeman ◽  
...  

Abstract T cell immunotherapies for cancer should ideally generate high levels of anti-tumor activity, with minimal host injury and permit the prolonged survival of functional memory/effector cells to prevent tumor recurrence. Following allogeneic stem cell transplantation, delayed donor leukocyte infusion (DLI) is one strategy employed to induce graft-versus-leukemia (GVL) responses while limiting the risk of host injury in terms of graft-versus-host disease. However, patients remain at significant risk of relapse following DLI and murine models of delayed DLI indicate that this results from the eventual loss of functional, alloreactive cytotoxic T lymphocytes (CTL) [Mapara et al. Transplantation 2003]. We hypothesised that the loss of functional CTL is driven by persistent stimulation of donor CD8 cells by alloantigen expressed by peripheral tissues. In order to follow and characterise an alloreactive CD8 response under conditions in which alloantigen was present or absent in peripheral tissues, we employed a model in which either parental B6 (H2b) or B6 x DBA-2 F1 (BDF1, H2dxb) mice were lethally irradiated and reconstituted with a mixture of B6 and BDF1 T cell depleted bone marrow. 8-10 weeks later congenic CD45.1 B6 splenocytes were transferred into the established mixed chimeras. This allowed us to test the importance of peripheral antigen in the loss of alloreactive CTL responses, since alloantigen was either restricted to the hematopoietic system (B6 +BDF1 → B6) or was ubiquitously expressed (B6 +BDF1 → BDF1). Following transfer of CD45.1 B6 splenocytes, the ensuing alloantigenspecific T cell response in both groups led to the elimination of alloantigen-positive (BDF1-derived) hematopoietic elements. Thereafter, alloreactive CD8 cells resided in an environment in which peripheral alloantigen was present (PA+) or absent (PA-). We observed similar kinetics of initial CD45.1+ CD8 cell proliferation and expansion and similar acquisition of a CD44highCD62Llow phenotype. However, by day 60, there were striking differences in the phenotype and function of transferred CD8 cells. In PA- hosts, CD45.1+ CD8 cells killed allogeneic target cells effectively both in vitro and in vivo, underwent rapid proliferation in a mixed leukocyte reaction and produced the effector cytokine, IFN-γ. In contrast CD45.1+ CD8 cells from PA+ hosts had little or no cytotoxic activity, did not proliferate to alloantigen and were IFN-γlow. Moreover, CD45.1+ CD8 cells from PA+ hosts displayed high levels of the co-inhibitory receptor PD-1, low levels of the IL-7Rα chain and responded poorly to IL-7 and IL-15 in vitro, a phenotype typical of the ‘exhaustion’ signature observed in CTL following chronic antigen exposure. In comparison, CD45.1+ CD8 cells from PA- hosts expressed significantly lower levels of PD-1, higher levels of IL-7Rα and demonstrated better responsiveness to IL-7 and IL-15 in vitro. In vitro PD-1 or PD-L1 blockade restored IFN-γ generation to CD45.1+ CD8 cells from PA+ hosts, suggesting that the PD-1 pathway may play a functional role in driving exhaustion of these cells. Importantly we observed no loss of long-term alloreactive CD4 responses in either PA+ or PA- hosts. This finding is consistent with a model in which peripheral alloantigen drives exhaustion since the majority of cells expressing Class II alloantigens in PA+ and PA- hosts would be restricted to the hematopoietic system and thus, would have been cleared in the initial alloresponse. The full exhausted phenotype of alloreactive CD8 cells described above was not seen until at least 30 days after transfer to PA+ hosts. However, as early as day 14, CTL primed in PA+ hosts produced less IFN-γ in comparison to those primed in PA-hosts, even though they were still equivalent in terms of their cytotoxicity. Furthermore, when CD8 cells primed in PA+ hosts were transferred to secondary antigen-free hosts, they still displayed reduced ‘fitness’ compared to CTL originally primed in PA- hosts. These data show that peripheral alloantigen qualitatively affects donor CTL function during priming and drives their eventual exhaustion. Additionally they suggest that blockade of co-inhibitory signals may have potential in restoring function to such cells as has been demonstrated in models of chronic infection.


2007 ◽  
Vol 14 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Stephanie Jacks ◽  
Steeve Giguère ◽  
John F. Prescott

ABSTRACT Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in foals but does not induce disease in adult horses. Virulence of R. equi depends on the presence of a large plasmid, which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH). Eradication of R. equi from the lungs depends on gamma interferon (IFN-γ) production by T lymphocytes. The objectives of the present study were to determine the relative in vivo expression of the vap genes of R. equi in the lungs of infected foals, to determine the recall response of bronchial lymph node (BLN) lymphocytes from foals and adult horses to each of the Vap proteins, and to compare the cytokine profiles of proliferating lymphocytes between foals and adult horses. vapA, vapD, and vapG were preferentially expressed in the lungs of infected foals, and expression of these genes in the lungs was significantly (P < 0.05) higher than that achieved during in vitro growth. VapA and VapC induced the strongest lymphoproliferative responses for foals and adult horses. There was no significant difference in recall lymphoproliferative responses or IFN-γ mRNA expression by bronchial lymph node lymphocytes between foals and adults. In contrast, interleukin 4 (IL-4) expression was significantly higher for adults than for foals for each of the Vap proteins. The ratio of IFN-γ to IL-4 was significantly higher for foals than for adult horses for most Vap proteins. Therefore, foals are immunocompetent and are capable of mounting lymphoproliferative responses of the same magnitude and cytokine phenotype as those of adult horses.


Blood ◽  
1977 ◽  
Vol 49 (6) ◽  
pp. 957-966
Author(s):  
P Pootrakul ◽  
A Christensen ◽  
B Josephson ◽  
CA Finch

The behavior in vivo of transferrin in loading and unloading iron from its two sites was examined in rats. Radioiron entering the plasma from the gastrointestinal tract in iron-deficient, normal and iron-loaded rats did not differ in its subsequent tissue distribution between erythroid marrow and liver of normal recipients from a second isotope added to the same plasma in vitro. Loading studies in vitro were then carried out employing a reticulocyte incubation model designed to place one isotope predominantly on one site of transferrin, more available to the erythron, and the second isotope on the other site, more available to the liver. In 15 groups of animals in which 3 different iron salts were employed to load transferrin with iron, the mean isotope ratio in the erythron was 1.03 (+/-0.06 SD) and the mean liver ratio was 0.75 (+/-0.21 SD). It was found that the incubation of plasma with reticulocytes resulted in contamination of the plasma by radioactive hemoglobin. After allowance was made for hepatic uptake of radiohemoglobin in the 13 groups in which proper correction could be made, the isotope ratio in the liver became 0.97 (+/-0.17 SD). It is concluded that iron atoms from the two sites of transferrin have similar tissue distributions in vivo in the experimental situations examined.


2019 ◽  
Vol 26 (4) ◽  
pp. 534-545 ◽  
Author(s):  
Shubha Priyamvada ◽  
Arivarasu N Anbazhagan ◽  
Anoop Kumar ◽  
Ishita Chatterjee ◽  
Alip Borthakur ◽  
...  

Abstract Background Intestinal epithelial apical membrane Cl-/HCO3- exchanger DRA (downregulated in adenoma, SLC26A3) has emerged as an important therapeutic target for diarrhea, emphasizing the potential therapeutic role of agents that upregulate DRA. All-trans retinoic acid (ATRA), a key vitamin A metabolite, was earlier shown by us to stimulate DRA expression in intestinal epithelial cells. However, its role in modulating DRA in gut inflammation has not been investigated. Aims Our aim was to analyze the efficacy of ATRA in counteracting inflammation-induced decrease in DRA in vitro and in vivo. Methods Interferon-γ (IFN-γ)-treated Caco-2 cells and dextran sulfate sodium (DSS)-treated C57BL/6J mice served as in vitro and in vivo models of gut inflammation, respectively. The effect of ATRA on IFN-γ-mediated inhibition of DRA function, expression, and promoter activity were elucidated. In the DSS colitis model, diarrheal phenotype, cytokine response, in vivo imaging, myeloperoxidase activity, and DRA expression were measured in the distal colon. Results All-trans retinoic acid (10 μM, 24 h) abrogated IFN-γ (30 ng/mL, 24 h)-induced decrease in DRA function, expression, and promoter activity in Caco-2 cells. All-trans retinoic acid altered IFN-γ signaling via blocking IFN-γ-induced tyrosine phosphorylation of STAT-1. All-trans retinoic acid cotreatment (1 mg/kg BW, i.p. daily) of DSS-treated mice (3% in drinking water for 7 days) alleviated colitis-associated weight loss, diarrheal phenotype, and induction of IL-1β and CXCL1 and a decrease in DRA mRNA and protein levels in the colon. Conclusion Our data showing upregulation of DRA under normal and inflammatory conditions by ATRA demonstrate a novel role of this micronutrient in alleviating IBD-associated diarrhea.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanan Jiang ◽  
Jing Zhang ◽  
Jimin Zhao ◽  
Zhenzhen Li ◽  
Hanyong Chen ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is a fatal disease with poor prognosis. The predominant reason for ESCC-related death is distal metastasis. A comprehensive understanding of the molecular mechanism underlying metastasis is needed for improving patient prognosis. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase, which plays a vital role in various physiological and pathophysiological processes. However, the role of TOPK in ESCC metastasis is unclear. Methods Tissue array was used to evaluate the correlation between TOPK expression and ESCC lymph node metastasis. Wound healing assay, transwell assay, and lung metastasis mice model were used to examine the role of TOPK in the migration of ESCC cells in vitro and in vivo. Protein kinase array, mass spectrometry (MS), and molecular modeling were used to examine the pathways and direct target proteins of TOPK that are involved in ESCC metastasis. Additionally, immunofluorescence and western blotting analyses were performed to verify these findings. Results The enhanced expression of TOPK was correlated with lymph node metastasis in the ESCC tissues. TOPK knockdown or treatment with the TOPK inhibitor (HI-TOPK-032) decreased the invasion and migration of ESCC cells in vitro. HI-TOPK-032 also inhibited the lung metastasis in ESCC cell xenograft in vivo model. Moreover, TOPK promoted the invasion of ESCC cells by activating the Src/GSK3β/STAT3 and ERK signaling pathways via γ-catenin. Conclusion The findings of this study reveal that TOPK is involved in ESCC metastasis and promoted the ESCC cell mobility by activating the Src/GSK3β/STAT3 and ERK signaling pathways. This indicated that TOPK may be a potential molecular therapeutic target for ESCC metastasis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2213-2213
Author(s):  
Stephanie Verfuerth ◽  
Karl S Peggs ◽  
Arnold Pizzey ◽  
Noha Chowdhry ◽  
Stephen Mackinnon

Abstract Targeted antiviral chemotherapy has greatly reduced the incidence of CMV disease post-HSCT, but adverse side effects still make CMV seropositivity a negative prognostic factor for survival. Immune protection from CMV disease depends on the adaptive immune response, and various strategies for adoptive cellular therapy for CMV have been evaluated in clinical trials to reduce the dependency on antiviral drugs. Characterizing the development of post-transplantation CMV-specific T cell responses may help identify minimum requirements for successful immunologic control of CMV reactivation. We investigated CMV-specific T cell immune reconstitution in 15 patients who all received ACT for CMV 4 weeks post-HSCT. The CMV seropositive donor-derived ACT product consisted of 1x105 CD4+ and CD8+ T cells/kg, generated through 2-week in vitro co-culture with CMV antigen-pulsed autologous dendritic cells. No graft versus host disease &gt;grade II occurred in the study group. CMV-specific T cells were characterized at various time points before, during, and after CMV reactivation events by IFN-γ secretion assay, and/or by phenotyping with HLA CMV pp65 and/or IE-1 peptide pentamers. Three patients who remained CMV PCR negative throughout had no detectable levels of CMV-specific T cells, whereas high levels of CMV-specific T cells developed in the other 12 patients who all experienced episodes of viral reactivation. 11/12 of the patients with CMV reactivation had pre-emptive antiviral chemotherapy, 1/12 controlled CMV reactivation unaided. 3/12 patients experienced a second episode of viral reactivation, which they controlled unaided. At the time of first CMV DNA detection, 1 week before the start of pre-emptive chemotherapy, pentamer+ cells were already detectable in 3/5 patients tested, with absolute numbers ranging from 1150-4900/ml blood. Only after a further 1 to 4 more weeks did T cells secreting IFN-γ in response to in vitro restimulation with CMV peptides first appear in 5 patients tested. By the time viral DNA had become undetectable post-antiviral chemotherapy or post-immunological control of viral replication, pentamer+ cells were present in 8/8 patients, with absolute numbers of pentamer+ T cells &gt;10000/ml in 7/8 patients, a level often quoted as ‘protective’ (median: 37530 cells/ml, range: 3200–139300/ml). CMV-specific CD8 T cells were maintained at high levels long after resolution of CMV viraemia (median: 24200/ml, range: 5100–75900). Absolute numbers of IFN-γ + T cells also reached high levels shortly before to just after the end of a CMV reactivation episode in 5/5 patients tested (CD8+IFN-γ + median: 48490/ml, range: 2150–138290), but subsequently temporarily dropped again to undetectable levels in some patients. Four patients had CMV reactivation episodes that were immunologically controlled unaided. Just prior these four reactivation events there was a total lack of CD8+ T cells functionally responsive to CMV. This was in spite of the presence CMV-specific CD8+ cells by phenotype in 3/3 patients tested, at &gt;10000/ml in one patient. 0% of these pentamer+ cells secreted IFN-γ in response to CMV peptide in vitro. Soon after, by the time of the first CMV PCR+ result CD8+ IFN-γ + T cells were already detected in all patients tested (median: 2180 cells/ml, range: 550–48480, n=3), with up to 64% of pent+ cells secreting IFN-γ. Pent+ cells were above the 10000 threshold in 2/3 patients tested at this time point. These data show that characterizing T cells by phenotype alone does not permit conclusions about their functionality, because some patients experienced CMV reactivation events in the presence of high levels of pentamer+ cells. Viral reactivation episodes however appeared to be associated with a prior lack of CMV-specific CD8+ cells capable of IFN-γ secretion. Immunological control of reactivation, on the other hand, may be associated with the ability to make rapid CMV-induced IFN-γ responses, because only patients with self-resolving CMV infection developed CD8+IFN-γ + responses immediately at the onset of viraemia. However it is not possible to know how many of the patients who received antiviral chemotherapy would have been able to control the infection unaided.


2002 ◽  
Vol 9 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Christophe Dercamp ◽  
Violette Sanchez ◽  
Julie Barrier ◽  
Emanuelle Trannoy ◽  
Bruno Guy

ABSTRACT In order to study the respective roles of CD4, CD8, and CD56 (NK) cells in gamma interferon (IFN-γ) production after in vitro stimulation with flu vaccine in a healthy adult human population, we depleted these cellular subtypes before stimulation with antigen (inactivated split vaccine, A/Texas H1N1, or A/Sydney H3N2). We observed that while CD4 cells were required for IFN-γ secretion in both conditions in vitro, CD56 (NK) cells and, to a lesser extent, CD8 cells had a negative effect on such synthesis upon H1N1 stimulation, as judged by an increased number of spots compared to the initial undepleted population. This regulation of IFN-γ secretion was associated with an increase in ICAM-1 expression, in particular on T and B cells. This study points out the importance of evaluating in vitro immune responses on a whole-cell population in addition to isolated subtypes if one needs to address potential cellular interactions occurring in vivo in some situations (H1N1 stimulation in the present case). Such cross-regulations occur even in vitro during the antigenic stimulation step.


2015 ◽  
Vol 37 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Xiaochen Wang ◽  
Shushan Yan ◽  
Donghua Xu ◽  
Jun Li ◽  
Yu Xie ◽  
...  

Background/Aims: Critical roles of PTPRO and TLR4 have been implicated in hepatocellular carcinoma. However, little is known about their modifying effects on inflammation-related diseases in liver, particularly fulminant hepatitis (FH). We aim to investigate the potential role of PTPRO and its interaction with TLR4 in LPS/D-GaIN induced FH. Methods: A LPS/D-GaIN induced mouse FH model was used. RAW264.7 cells were transfected with PTPRO over-expressed lentiviral plasmids for further investigation. Results: The mortality of PTPRO KO mice is higher than WT mice after LPS/D-GaIN administration. Aggravated liver injury was demonstrated by increased level of serous ALT and AST and numerous hepatic cells death in PTPRO KO mice following LPS/D-GaIN administration. Interestingly, inflammation was attenuated in PTPRO-deficient mice following LPS/D-GaIN administration, which was suggested by decreased inflammatory cytokines (TNF-a, IFN-γ, IL-1ß, IL-6, IL-17A and IL-12) and cells infiltrating into spleen (CD3+IFN-γ+ cells, CD3+TNF-a+ cells, F4/80+/TLR4+ cells). A feedback regulation between PTPRO and TLR4 dependent on NF-γB signaling pathway was demonstrated in vivo and in vitro. Conclusion: PTPRO plays an important role in FH by interacting with TLR4. The crosstalk between PTPRO and TLR4 is a novel bridge linking innate immune and adaptive immune in acute liver injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Cruz-Zárate ◽  
O. López-Ortega ◽  
D. A. Girón-Pérez ◽  
A. M. Gonzalez-Suarez ◽  
J. L. García-Cordero ◽  
...  

AbstractCell migration is a dynamic process that involves adhesion molecules and the deformation of the moving cell that depends on cytoskeletal remodeling and actin-modulating proteins such as myosins. In this work, we analyzed the role of the class I Myosin-1 g (Myo1g) in migratory processes of LPS + IL-4 activated B lymphocytes in vivo and in vitro. In vivo, the absence of Myo1g reduced homing of activated B lymphocytes into the inguinal lymph node. Using microchannel chambers and morphology analysis, we found that the lack of Myo1g caused adhesion and chemotaxis defects. Additionally, deficiency in Myo1g causes flaws in adopting a migratory morphology. Our results highlight the importance of Myo1g during B cell migration.


Sign in / Sign up

Export Citation Format

Share Document