scholarly journals Pseudomonas aeruginosa Alginate Benefits Staphylococcus aureus?

2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Michael J. Schurr

ABSTRACT In this issue of Journal of Bacteriology, Price et al. show that the Pseudomonas aeruginosa-produced exopolysaccharide alginate protects Staphylococcus aureus by dampening the expression of P. aeruginosa virulence products that usually inhibit S. aureus respiration and cell membrane integrity when the two organisms compete in other environments (C. E. Price, D. G. Brown, D. H. Limoli, V. V. Phelan, and G. A. O’Toole, J Bacteriol 202:e00559-19, 2020, https://doi.org/10.1128/jb.00559-19). This is the first report that exogenously added alginate affects P. aeruginosa competition and provides a partial explanation for S. aureus and P. aeruginosa coinfections in cystic fibrosis.

2012 ◽  
Vol 56 (10) ◽  
pp. 5046-5053 ◽  
Author(s):  
Andrew D. Berti ◽  
Justine E. Wergin ◽  
Gary G. Girdaukas ◽  
Scott J. Hetzel ◽  
George Sakoulas ◽  
...  

ABSTRACTDaptomycin (DAP) is increasingly used as a part of combination therapy, particularly in complex methicillin-resistantStaphylococcus aureus(MRSA) infections. While multiple studies have reported the potential for synergy between DAP and adjunctive anti-infectives, few have examined the influence of adjunctive therapy on the emergence of DAP resistance. This study examined eight adjunctive antimicrobial combinations with DAPin vitroand the emergence of DAP resistance over time (up to 4 weeks) using clinical isolates of DAP-susceptible MRSA (MIC, 0.5 μg/ml) in which DAP resistance subsequently developed during patient therapy (MIC, 3 μg/ml). In addition to DAP susceptibility testing, selected strains were examined for phenotypic changes associated with DAP resistance, including changes to cell wall thickness (CWT) and cell membrane alterations. The addition of either oxacillin or clarithromycin in medium containing DAP significantly inhibited the development of DAP resistance through the entirety of the 4-week exposure (10- to 32-fold MIC reduction from that of DAP alone). Combinations with rifampin or fosfomycin were effective in delaying the emergence of DAP resistance through the end of week one only (week one MIC, 0.5 μg/ml; week four MIC, 24 μg/ml). Cell wall thickening was observed for all antibiotic combinations regardless of their effect on the DAP MIC (14 to 70% increase in CWT), while changes in cell membrane fluidity were variable and treatment dependent. DAP showed reduced activity against strains with DAP MICs of 1 to 12 μg/ml, but cell membrane integrity was still disrupted at concentrations achieved with doses greater than 10 mg/kg of body weight. The emergence of DAP resistance in MRSA is strongly influenced by the presence of subinhibitory concentrations of adjunctive antimicrobials. These data suggest that combining DAP with oxacillin or clarithromycin may delay the development of DAP resistance in cases requiring prolonged antibiotic therapy.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2015 ◽  
Vol 197 (14) ◽  
pp. 2250-2251 ◽  
Author(s):  
Patricia M. Barnabie ◽  
Marvin Whiteley

Communication is an important factor for bacterial survival, growth, and persistence. Much work has examined both inter- and intraspecies interactions and their effects on virulence. Now, researchers have begun to explore the ways in which host-modulated factors can impact bacterial interactions and subsequently affect patient outcomes. In this issue, two papers discuss how the host environment alters interactions between the pathogensPseudomonas aeruginosaandStaphylococcus aureus, largely in the context of cystic fibrosis.


2017 ◽  
Vol 63 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Debaprasad Parai ◽  
Ekramul Islam ◽  
Jayati Mitra ◽  
Samir Kumar Mukherjee

The goal of this study was to evaluate the antibiofilm and antimicrobial activities of Bacoside A, a formulation of phytochemicals from Bacopa monnieri, against Staphylococcus aureus and Pseudomonas aeruginosa, which are known to form biofilms as one of their virulence traits. The antimicrobial effects of Bacoside A were tested using the minimum inhibitory concentration and minimum bactericidal concentration assays. A cell membrane disruption assay was performed to find its possible target site. MTT assay, crystal violet assay, and microscopic studies were performed to assess the antibiofilm activity. Bacoside A showed antimicrobial activity against both test organisms in their planktonic and biofilm states. At a subminimum inhibitory concentration of 200 μg·mL−1, Bacoside A significantly removed ∼88%–93% of bacterial biofilm developed on microtiter plates. Biochemical and microscopic studies suggested that the eradication of biofilm might be due to the loss of extracellular polymeric substances and to a change in cell membrane integrity of the selected bacterial strains treated with Bacoside A. These results indicate that Bacoside A might be considered as an antimicrobial having the ability to disrupt biofilms. Thus, either alone or in combination with other therapeutics, Bacoside A could be useful to treat biofilm-related infections caused by opportunistic bacterial pathogens.


2014 ◽  
Vol 80 (16) ◽  
pp. 4832-4841 ◽  
Author(s):  
Carole Rougier ◽  
Audrey Prorot ◽  
Philippe Chazal ◽  
Philippe Leveque ◽  
Patrick Leprat

ABSTRACTThe aim of this study was to investigate the effects on the cell membranes ofEscherichia coliof 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C.Escherichia colicells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced.


mSystems ◽  
2021 ◽  
Author(s):  
Laura J. Dunphy ◽  
Kassandra L. Grimes ◽  
Nishikant Wase ◽  
Glynis L. Kolling ◽  
Jason A. Papin

Interactions between P. aeruginosa and S. aureus can impact pathogenicity and antimicrobial efficacy. In this study, we aim to better understand the potential for metabolic interactions between P. aeruginosa and S. aureus in an environment resembling the cystic fibrosis lung.


2021 ◽  
Vol 70 (10) ◽  
Author(s):  
Nur Masirah M. Zain ◽  
Karmel Webb ◽  
Iain Stewart ◽  
Nigel Halliday ◽  
David A. Barrett ◽  
...  

Introduction. Pseudomonas aeruginosa produces quorum sensing signalling molecules including 2-alkyl-4-quinolones (AQs), which regulate virulence factor production in the cystic fibrosis (CF) airways. Hypothesis/Gap statement. Culture can lead to condition-dependent artefacts which may limit the potential insights and applications of AQs as minimally-invasive biomarkers of bacterial load. Aim. We aimed to use culture-independent methods to explore the correlations between AQ levels and live P. aeruginosa load in adults with CF. Methodology. Seventy-five sputum samples at clinical stability and 48 paired sputum samples obtained at the beginning and end of IV antibiotics for a pulmonary exacerbation in adults with CF were processed using a viable cell separation technique followed by quantitative P. aeruginosa polymerase chain reaction (qPCR). Live P. aeruginosa qPCR load was compared with the concentrations of three AQs (HHQ, NHQ and HQNO) detected in sputum, plasma and urine. Results. At clinical stability and the beginning of IV antibiotics for pulmonary exacerbation, HHQ, NHQ and HQNO measured in sputum, plasma and urine were consistently positively correlated with live P. aeruginosa qPCR load in sputum, compared to culture. Following systemic antibiotics live P. aeruginosa qPCR load decreased significantly (P<0.001) and was correlated with a reduction in plasma NHQ (plasma: r=0.463, P=0.003). Conclusion. In adults with CF, AQ concentrations correlated more strongly with live P. aeruginosa bacterial load measured by qPCR compared to traditional culture. Prospective studies are required to assess the potential of systemic AQs as biomarkers of P. aeruginosa bacterial burden.


2017 ◽  
Vol 199 (17) ◽  
Author(s):  
Michael J. Noto ◽  
William J. Burns ◽  
William N. Beavers ◽  
Eric P. Skaar

ABSTRACT Pseudomonas aeruginosa and Staphylococcus aureus are commonly isolated from polymicrobial infections, such as wound infections and chronic respiratory infections of persons with cystic fibrosis. Despite their coisolation, P. aeruginosa produces substances toxic to S. aureus, including pyocyanin, a blue-pigmented molecule that functions in P. aeruginosa virulence. Pyocyanin inhibits S. aureus respiration, forcing it to derive energy from fermentation and adopt a small-colony variant (SCV) phenotype. The mechanisms by which S. aureus sustains infection in the presence of pyocyanin are not clear. We sought to clarify the mechanisms of pyocyanin toxicity in S. aureus as well as identify the staphylococcal factors involved in its resistance to pyocyanin toxicity. Nonrespiring S. aureus SCVs are inhibited by pyocyanin through pyocyanin-dependent reactive oxygen species (ROS) production, indicating that pyocyanin toxicity is mediated through respiratory inhibition and ROS generation. Selection on pyocyanin yielded a menadione auxotrophic SCV capable of growth on high concentrations of pyocyanin. Genome sequencing of this isolate identified mutations in four genes, including saeS, menD, NWMN_0006, and qsrR. QsrR is a quinone-sensing repressor of quinone detoxification genes. Inactivation of qsrR resulted in significant pyocyanin resistance, and additional pyocyanin resistance was achieved through combined inactivation of qsrR and menadione biosynthesis. Pyocyanin-resistant S. aureus has an enhanced capability to inactivate pyocyanin, suggesting QsrR-regulated gene products may degrade pyocyanin to alleviate toxicity. These findings demonstrate pyocyanin-mediated ROS generation as an additional mechanism of pyocyanin toxicity and define QsrR as a key mediator of pyocyanin resistance in S. aureus. IMPORTANCE Many bacterial infections occur in the presence of other microbes, where interactions between different microbes and the host impact disease. In patients with cystic fibrosis, chronic lung infection with multiple microbes results in the most severe disease manifestations. Staphylococcus aureus and Pseudomonas aeruginosa are prevalent cystic fibrosis pathogens, and infection with both is associated with worse outcomes. These organisms have evolved mechanisms of competing with one another. For example, P. aeruginosa produces pyocyanin, which inhibits S. aureus growth. Our research has identified how pyocyanin inhibits S. aureus growth and how S. aureus can adapt to survive in the presence of pyocyanin. Understanding how S. aureus sustains infection in the presence of P. aeruginosa may identify means of disrupting these microbial communities.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 120 ◽  
Author(s):  
Young ◽  
Ozcan ◽  
Lee ◽  
Maxwell ◽  
Andl ◽  
...  

Nosocomial infections pose serious health concerns with over 2 million reported annually in the United States. Many of these infections are associated with bacterial resistance to antibiotics and hence, alternative treatments are critically needed. The objective of this study was to assess the antimicrobial efficacy of a gallium (Ga)-based particle coated with N-Acetyl Cysteine (Ga-NAC) against Pseudomonas aeruginosa PAO1. Our studies showed the Minimum Inhibitory Concentration (MIC) of PAO1 treated with Ga-NAC was 1 µg/mL. Cytotoxicity of Ga-NAC against multiple cell lines was determined with no cytotoxicity observed up to concentrations of 2000 µg/mL (metal concentration), indicating a high therapeutic window. To elucidate potential antibacterial modes of action, Inductively Coupled Plasma—Mass Spectrometry (ICP-MS), infrared spectroscopy, and atomic force microscopy (AFM) were used. The results suggest improved Ga3+ interaction with PAO1 through Ga-NAC particles. No significant change in cell membrane chemistry or roughening was detected. As cell membrane integrity remained intact, the antimicrobial mode of action was linked to cellular internalization of Ga and subsequent iron metabolic disruption. Furthermore, Ga-NAC inhibited and disrupted biofilms seen with crystal violet assay and microscopy. Our findings suggest the Ga-NAC particle can potentially be used as an alternative to antibiotics for treatment of Pseudomonas aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document