scholarly journals Iron-Mediated Control of Pseudomonas aeruginosa-Staphylococcus aureus Interactions in the Cystic Fibrosis Lung

2015 ◽  
Vol 197 (14) ◽  
pp. 2250-2251 ◽  
Author(s):  
Patricia M. Barnabie ◽  
Marvin Whiteley

Communication is an important factor for bacterial survival, growth, and persistence. Much work has examined both inter- and intraspecies interactions and their effects on virulence. Now, researchers have begun to explore the ways in which host-modulated factors can impact bacterial interactions and subsequently affect patient outcomes. In this issue, two papers discuss how the host environment alters interactions between the pathogensPseudomonas aeruginosaandStaphylococcus aureus, largely in the context of cystic fibrosis.

mSystems ◽  
2021 ◽  
Author(s):  
Laura J. Dunphy ◽  
Kassandra L. Grimes ◽  
Nishikant Wase ◽  
Glynis L. Kolling ◽  
Jason A. Papin

Interactions between P. aeruginosa and S. aureus can impact pathogenicity and antimicrobial efficacy. In this study, we aim to better understand the potential for metabolic interactions between P. aeruginosa and S. aureus in an environment resembling the cystic fibrosis lung.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Michael J. Schurr

ABSTRACT In this issue of Journal of Bacteriology, Price et al. show that the Pseudomonas aeruginosa-produced exopolysaccharide alginate protects Staphylococcus aureus by dampening the expression of P. aeruginosa virulence products that usually inhibit S. aureus respiration and cell membrane integrity when the two organisms compete in other environments (C. E. Price, D. G. Brown, D. H. Limoli, V. V. Phelan, and G. A. O’Toole, J Bacteriol 202:e00559-19, 2020, https://doi.org/10.1128/jb.00559-19). This is the first report that exogenously added alginate affects P. aeruginosa competition and provides a partial explanation for S. aureus and P. aeruginosa coinfections in cystic fibrosis.


2020 ◽  
Author(s):  
Laura Camus ◽  
Paul Briaud ◽  
Sylvère Bastien ◽  
Sylvie Elsen ◽  
Anne Doléans-Jordheim ◽  
...  

AbstractIn the context of infection, Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated, particularly in cystic fibrosis (CF) patients. Within lungs, the two pathogens exhibit a range of competitive and coexisting interactions. In the present study, we explored the impact of S. aureus on the physiology of P. aeruginosa in the context of coexistence. Transcriptomic analyses showed that S. aureus significantly and specifically affects the expression of numerous genes involved in P. aeruginosa carbon and amino acid metabolism. In particular, 65% of the strains presented considerable overexpression of the genes involved in the acetoin catabolic (aco) pathway. We demonstrated that acetoin is (i) produced by clinical S. aureus strains, (ii) detected in sputa from CF patients, and (iii) involved in P. aeruginosa’s aco system induction. Furthermore, acetoin is catabolized by P. aeruginosa, a metabolic process that improves the survival of both pathogens by providing a new carbon source for P. aeruginosa and avoiding the toxic accumulation of acetoin on S. aureus. Due to its beneficial effects on both bacteria, acetoin catabolism could testify to the establishment of trophic cooperation between S. aureus and P. aeruginosa in the CF lung environment, thus promoting their persistence.


2017 ◽  
Vol 199 (17) ◽  
Author(s):  
Michael J. Noto ◽  
William J. Burns ◽  
William N. Beavers ◽  
Eric P. Skaar

ABSTRACT Pseudomonas aeruginosa and Staphylococcus aureus are commonly isolated from polymicrobial infections, such as wound infections and chronic respiratory infections of persons with cystic fibrosis. Despite their coisolation, P. aeruginosa produces substances toxic to S. aureus, including pyocyanin, a blue-pigmented molecule that functions in P. aeruginosa virulence. Pyocyanin inhibits S. aureus respiration, forcing it to derive energy from fermentation and adopt a small-colony variant (SCV) phenotype. The mechanisms by which S. aureus sustains infection in the presence of pyocyanin are not clear. We sought to clarify the mechanisms of pyocyanin toxicity in S. aureus as well as identify the staphylococcal factors involved in its resistance to pyocyanin toxicity. Nonrespiring S. aureus SCVs are inhibited by pyocyanin through pyocyanin-dependent reactive oxygen species (ROS) production, indicating that pyocyanin toxicity is mediated through respiratory inhibition and ROS generation. Selection on pyocyanin yielded a menadione auxotrophic SCV capable of growth on high concentrations of pyocyanin. Genome sequencing of this isolate identified mutations in four genes, including saeS, menD, NWMN_0006, and qsrR. QsrR is a quinone-sensing repressor of quinone detoxification genes. Inactivation of qsrR resulted in significant pyocyanin resistance, and additional pyocyanin resistance was achieved through combined inactivation of qsrR and menadione biosynthesis. Pyocyanin-resistant S. aureus has an enhanced capability to inactivate pyocyanin, suggesting QsrR-regulated gene products may degrade pyocyanin to alleviate toxicity. These findings demonstrate pyocyanin-mediated ROS generation as an additional mechanism of pyocyanin toxicity and define QsrR as a key mediator of pyocyanin resistance in S. aureus. IMPORTANCE Many bacterial infections occur in the presence of other microbes, where interactions between different microbes and the host impact disease. In patients with cystic fibrosis, chronic lung infection with multiple microbes results in the most severe disease manifestations. Staphylococcus aureus and Pseudomonas aeruginosa are prevalent cystic fibrosis pathogens, and infection with both is associated with worse outcomes. These organisms have evolved mechanisms of competing with one another. For example, P. aeruginosa produces pyocyanin, which inhibits S. aureus growth. Our research has identified how pyocyanin inhibits S. aureus growth and how S. aureus can adapt to survive in the presence of pyocyanin. Understanding how S. aureus sustains infection in the presence of P. aeruginosa may identify means of disrupting these microbial communities.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Eryn E. Bernardy ◽  
Robert A. Petit ◽  
Vishnu Raghuram ◽  
Ashley M. Alexander ◽  
Timothy D. Read ◽  
...  

ABSTRACT Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa. Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa. To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health. IMPORTANCE Staphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa. When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus. Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa. We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.


2011 ◽  
Vol 55 (5) ◽  
pp. 2417-2419 ◽  
Author(s):  
Pamela McGhee ◽  
Catherine Clark ◽  
Kim Credito ◽  
Linda Beachel ◽  
Glenn A. Pankuch ◽  
...  

ABSTRACTWe tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistantStaphylococcus aureus(MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin againstPseudomonas aeruginosa, MRSA, andBurkholderia cepaciaisolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin.


2015 ◽  
Vol 197 (14) ◽  
pp. 2252-2264 ◽  
Author(s):  
Laura M. Filkins ◽  
Jyoti A. Graber ◽  
Daniel G. Olson ◽  
Emily L. Dolben ◽  
Lee R. Lynd ◽  
...  

ABSTRACTThe airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during pediatric years and early adulthood.Staphylococcus aureusis the most prevalent pathogen during early childhood, but during late teens and early adulthood, a shift in microbial composition occurs leading toPseudomonas aeruginosacommunity predominance in ∼50% of adults. We developed a robust dual-bacterialin vitrococulture system ofP. aeruginosaandS. aureuson monolayers of human bronchial epithelial cells homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutation to better model the mechanisms of this interaction. We show thatP. aeruginosadrives theS. aureusexpression profile from that of aerobic respiration to fermentation. This shift is dependent on the production of both 2-heptyl-4-hydroxyquinolineN-oxide (HQNO) and siderophores byP. aeruginosa. Furthermore,S. aureus-produced lactate is a carbon source thatP. aeruginosapreferentially consumes over medium-supplied glucose. We find that initiallyS. aureusandP. aeruginosacoexist; however, over extended cocultureP. aeruginosareducesS. aureusviability, also in an HQNO- andP. aeruginosasiderophore-dependent manner. Interestingly,S. aureussmall-colony-variant (SCV) genetic mutant strains, which have defects in their electron transport chain, experience reduced killing byP. aeruginosacompared to their wild-type parent strains; thus, SCVs may provide a mechanism for persistence ofS. aureusin the presence ofP. aeruginosa. We propose that the mechanism ofP. aeruginosa-mediated killing ofS. aureusis multifactorial, requiring HQNO andP. aeruginosasiderophores as well as additional genetic, environmental, and nutritional factors.IMPORTANCEIn individuals with cystic fibrosis,Staphylococcus aureusis the primary respiratory pathogen during childhood. During adulthood,Pseudomonas aeruginosapredominates and correlates with worse patient outcome. The mechanism(s) by whichP. aeruginosaoutcompetes or killsS. aureusis not well understood. We describe anin vitrodual-bacterial species coculture system on cystic fibrosis-derived airway cells, which models interactions relevant to patients with cystic fibrosis. Further, we show that molecules produced byP. aeruginosaadditively induce a transition ofS. aureusmetabolism from aerobic respiration to fermentation and eventually lead to loss ofS. aureusviability. Elucidating the molecular mechanisms ofP. aeruginosacommunity predominance can provide new therapeutic targets and approaches to impede this microbial community transition and subsequent patient worsening.


mSphere ◽  
2021 ◽  
Author(s):  
Marie K. Wieneke ◽  
Felix Dach ◽  
Claudia Neumann ◽  
Dennis Görlich ◽  
Lena Kaese ◽  
...  

Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche.


Sign in / Sign up

Export Citation Format

Share Document