scholarly journals Phosphoketolase Pathway Dominates in Lactobacillus reuteri ATCC 55730 Containing Dual Pathways for Glycolysis

2007 ◽  
Vol 190 (1) ◽  
pp. 206-212 ◽  
Author(s):  
Emma Årsköld ◽  
Elke Lohmeier-Vogel ◽  
Rong Cao ◽  
Stefan Roos ◽  
Peter Rådström ◽  
...  

ABSTRACT Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (ii) glucose alone, and (iii) sucrose alone, respectively. Analysis of the genome of L. reuteri ATCC 55730 confirmed the presence of the genes for both pathways. Further evidence for the simultaneous operation of two central carbon metabolic pathways was found through the detection of fructose-1,6-bisphosphate aldolase, phosphofructokinase, and phosphoglucoisomerase activities and the presence of phosphorylated EMP and PKP intermediates using in vitro 31P NMR. The maximum specific growth rate and biomass yield obtained on glucose were twice as low as on sucrose. This was the result of low ATP levels being present in glucose-metabolizing cells, although the ATP production flux was as high as in sucrose-metabolizing cells due to a twofold increase of enzyme activities in both glycolytic pathways. Growth performance on glucose could be improved by adding fructose as an external electron acceptor, suggesting that the observed behavior is due to a redox imbalance causing energy starvation.

2018 ◽  
Author(s):  
Rebecca A. Wilkes ◽  
Caroll M. Mendonca ◽  
Ludmilla Aristilde

ABSTRACTThe genetic characterization ofPseudomonas protegensPf-5 was recently completed. However, the inferred metabolic network structure has not yet been evaluated experimentally. Here we employed13C-tracers and quantitative flux analysis to investigate the intracellular network for carbohydrate metabolism. Similar to otherPseudomonasspecies,P. protegensPf-5 relied primarily on the Entner-Doudoroff (ED) pathway to connect initial glucose catabolism to downstream metabolic pathways. Flux quantitation determined that, in lieu of the direct phosphorylation of glucose by glucose kinase, phosphorylation of oxidized products of glucose (gluconate and 2-ketogluconate) towards the ED pathway accounted for over 90% of consumed glucose and greater than 35% of consumed glucose was secreted as gluconate and 2-ketogluconate. Consistent with the lack of annotated pathways for the initial catabolism of pentoses and galactose inP. protegensPf-5, only glucose was assimilated into intracellular metabolites in the presence of xylose, arabinose, or galactose. However, when glucose was fed simultaneously with fructose or mannose, co-uptake of the hexoses was evident but glucose was preferred over fructose (3 to 1) and over mannose (4 to 1). Despite gene annotation of mannose catabolism toward fructose 6-phosphate, metabolite labeling patterns revealed that mannose-derived carbons specifically entered central carbon metabolism via fructose-1,6-bisphosphate, similarly to fructose catabolism. Remarkably, carbons from mannose and fructose were found to cycle backward through the upper Emden-Meyerhof-Parnas pathway to feed into the ED pathway. Therefore, the operational metabolic network for processing carbohydrates inP. protegensPf-5 prioritizes flux through the ED pathway to channel carbons to downstream metabolic pathways.IMPORTANCESpecies of thePseudomonasgenus thrive in various nutritional environments and have strong biocatalytic potential due to their diverse metabolic capabilities. Carbohydrate substrates are ubiquitous both in environmental matrices and in feedstocks for engineered bioconversion. Here we investigated the metabolic network for carbohydrate metabolism inP. protegensPf-5. Metabolic flux quantitation revealed the relative involvement of different catabolic routes in channeling carbohydrate carbons through the network. We also uncovered that mannose catabolism was similar to fructose catabolism, despite the gene annotation of two different pathways in the genome. Elucidation of the constitutive metabolic network inP. protegensis important for understanding its innate carbohydrate processing, thus laying the foundation for targeting metabolic engineering of this untappedPseudomonasspecies.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Jing Tan ◽  
Ming Yang ◽  
Haiping Wang ◽  
Yandi Wu ◽  
Yuanlong Li ◽  
...  

Aims: Lack of cardiac regeneration with robust fibrosis response to the acute myocardial injury is the main obstacle to clinical treatment of cardiovascular diseases in humans. Stimulating the proliferation of endogenous cardiomyocytes (CMs) and replacing the scarred tissue with new functional CMs is a potential therapeutic strategy to the patients with heart failure. Heart rate reduction (HRR) is regarded as an effective clinical treatment for myocardial infarction. However, the mechanism of HRR promoting the recovery of cardiac function after injury still remains controversial, and whether there is any endogenous CM proliferation induced by HRR is undefined. Methods and results: The beating of CMs was reduced in vitro and heart rate (HR) of adult mice and different animal models of myocardial injury were modulated by six antiarrhythmic drugs to determine the role of HR in CM proliferation and cardiac repair. RNA-seq, extracellular flux analysis, metabolic flux analysis, and metabonomics were used to study the CM metabolism after HR modulation. We verified that reducing the beating can induce CM proliferation both in vitro and in vivo physiologically, and HRR also promoted cardiac regenerative repair after myocardial injury as well, reversely, increasing HR showed the opposite effect. Mechanistically, HRR reduced energy metabolism requirements and total ATP production of CMs but switched energy metabolic mode that the proportion of ATP production from aerobic glycolysis was increased, while from fatty acid oxidation was decreased. The switching of energy metabolic mode in CMs occurred in synchrony with the changes of glycolytic enzymes activities, these enzymes, including PFKFB3, PKM2, GAPDH, induced G1/S transition for cell cycle re-entry of CMs by upregulating the expression of cyclin D and CDK4/6 and facilitate substrates into the biomass needed to produce a new cell by biosynthesis. This coordinating function of glycolytic enzymes contributed to CM proliferation. Conclusion: Together, these results demonstrate that reduction of heart rate promotes CM proliferation by switching the energy metabolic mode, and highlight the potential therapeutic role of HRR in regenerative medicine.


2004 ◽  
Vol 70 (12) ◽  
pp. 7277-7287 ◽  
Author(s):  
Christoph Wittmann ◽  
Patrick Kiefer ◽  
Oskar Zelder

ABSTRACT Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6 Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.


2004 ◽  
Vol 70 (4) ◽  
pp. 2307-2317 ◽  
Author(s):  
Marco Sonderegger ◽  
Marie Jeppsson ◽  
Bärbel Hahn-Hägerdal ◽  
Uwe Sauer

ABSTRACT Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic chemostat cultures grown on xylose-glucose mixtures and xylose alone, as well as a combination of global gene expression and metabolic flux analysis of anaerobic chemostat cultures grown on xylose-glucose mixtures, we identified the distinguishing characteristics of this unique phenotype. First, the transcript levels and metabolic fluxes throughout central carbon metabolism were significantly higher than those in the parent strain, and they were most pronounced in the xylose-specific, pentose phosphate, and glycerol pathways. Second, differential expression of many genes involved in redox metabolism indicates that increased cytosolic NADPH formation and NADH consumption enable a higher flux through the two-step oxidoreductase reaction of xylose to xylulose in the mutant. Redox balancing is apparently still a problem in this strain, since anaerobic growth on xylose could be improved further by providing acetoin as an external NADH sink. This improved growth was accompanied by an increased ATP production rate and was not accompanied by higher rates of xylose uptake or cytosolic NADPH production. We concluded that anaerobic growth of the yeast on xylose is ultimately limited by the rate of ATP production and not by the redox balance per se, although the redox imbalance, in turn, limits ATP production.


2010 ◽  
Vol 1 (4) ◽  
pp. 391-405 ◽  
Author(s):  
T. Binsl ◽  
A. De Graaf ◽  
K. Venema ◽  
J. Heringa ◽  
A. Maathuis ◽  
...  

This paper explores human gut bacterial metabolism of starch using a combined analytical and computational modelling approach for metabolite and flux analysis. Non-steady-state isotopic labelling experiments were performed with human faecal microbiota in a well-established in vitro model of the human colon. After culture stabilisation, [U-13C] starch was added and samples were taken at regular intervals. Metabolite concentrations and 13C isotopomeric distributions were measured amongst other things for acetate, propionate and butyrate by mass spectrometry and NMR. The vast majority of metabolic flux analysis methods based on isotopomer analysis published to date are not applicable to metabolic non-steady-state experiments. We therefore developed a new ordinary differential equation-based representation of a metabolic model of human faecal microbiota to determine eleven metabolic parameters that characterised the metabolic flux distribution in the isotope labelling experiment. The feasibility of the model parameter quantification was demonstrated on noisy in silico data using a downhill simplex optimisation, matching simulated labelling patterns of isotopically labelled metabolites with measured metabolite and isotope labelling data. Using the experimental data, we determined an increasing net label influx from starch during the experiment from 94±1 µmol/l/min to 133±3 µmol/l/min. Only about 12% of the total carbon flux from starch reached propionate. Propionate production mainly proceeded via succinate with a small contribution via acrylate. The remaining flux from starch yielded acetate (35%) and butyrate (53%). Interpretation of 13C NMR multiplet signals further revealed that butyrate, valerate and caproate were mainly synthesised via cross-feeding, using acetate as a co-substrate. This study demonstrates for the first time that the experimental design and the analysis of the results by computational modelling allows the determination of time-resolved effects of nutrition on the flux distribution within human faecal microbiota in metabolic non-steady-state.


2010 ◽  
Vol 192 (17) ◽  
pp. 4357-4366 ◽  
Author(s):  
Abdelali Daddaoua ◽  
Tino Krell ◽  
Carlos Alfonso ◽  
Bertrand Morel ◽  
Juan-Luis Ramos

ABSTRACT Metabolic flux analysis revealed that in Pseudomonas putida KT2440 about 50% of glucose taken up by the cells is channeled through the 2-ketogluconate peripheral pathway. This pathway is characterized by being compartmentalized in the cells. In fact, initial metabolism of glucose to 2-ketogluconate takes place in the periplasm through a set of reactions catalyzed by glucose dehydrogenase and gluconate dehydrogenase to yield 2-ketogluconate. This metabolite is subsequently transported to the cytoplasm, where two reactions are carried out, giving rise to 6-phosphogluconate, which enters the Entner-Doudoroff pathway. The genes for the periplasmic and cytoplasmic set of reactions are clustered in the host chromosome and grouped within two independent operons that are under the control of the PtxS regulator, which also modulates its own synthesis. Here, we show that although the two catabolic operons are induced in vivo by glucose, ketogluconate, and 2-ketogluconate, in vitro we found that only 2-ketogluconate binds to the regulator with an apparent KD (equilibrium dissociation constant) of 15 μM, as determined using isothermal titration calorimetry assays. PtxS is made of two domains, a helix-turn-helix DNA-binding domain located at the N terminus and a C-terminal domain that binds the effector. Differential scanning calorimetry assays revealed that PtxS unfolds via two events characterized by melting points of 48.1°C and 57.6°C and that, in the presence of 2-ketogluconate, the unfolding of the effector binding domain occurs at a higher temperature, providing further evidence for 2-ketogluconate-PtxS interactions. Purified PtxS is a dimer that binds to the target promoters with affinities in the range of 1 to 3 μM. Footprint analysis revealed that PtxS binds to an almost perfect palindrome that is present within the three promoters and whose consensus sequence is 5′-TGAAACCGGTTTCA-3′. This palindrome overlaps with the RNA polymerase binding site.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71909 ◽  
Author(s):  
Manuel Quirós ◽  
Rubén Martínez-Moreno ◽  
Joan Albiol ◽  
Pilar Morales ◽  
Felícitas Vázquez-Lima ◽  
...  

2007 ◽  
Vol 73 (12) ◽  
pp. 3859-3864 ◽  
Author(s):  
Yinjie J. Tang ◽  
Romy Chakraborty ◽  
H�ctor Garc�a Mart�n ◽  
Jeannie Chu ◽  
Terry C. Hazen ◽  
...  

ABSTRACT We analyzed the carbon fluxes in the central metabolism of Geobacter metallireducens strain GS-15 using 13C isotopomer modeling. Acetate labeled in the first or second position was the sole carbon source, and Fe-nitrilotriacetic acid was the sole terminal electron acceptor. The measured labeled acetate uptake rate was 21 mmol/g (dry weight)/h in the exponential growth phase. The resulting isotope labeling pattern of amino acids allowed an accurate determination of the in vivo global metabolic reaction rates (fluxes) through the central metabolic pathways using a computational isotopomer model. The tracer experiments showed that G. metallireducens contained complete biosynthesis pathways for essential metabolism, and this strain might also have an unusual isoleucine biosynthesis route (using acetyl coenzyme A and pyruvate as the precursors). The model indicated that over 90% of the acetate was completely oxidized to CO2 via a complete tricarboxylic acid cycle while reducing iron. Pyruvate carboxylase and phosphoenolpyruvate (PEP) carboxykinase were present under these conditions, but enzymes in the glyoxylate shunt and malic enzyme were absent. Gluconeogenesis and the pentose phosphate pathway were mainly employed for biosynthesis and accounted for less than 3% of total carbon consumption. The model also indicated surprisingly high reversibility in the reaction between oxoglutarate and succinate. This step operates close to the thermodynamic equilibrium, possibly because succinate is synthesized via a transferase reaction, and the conversion of oxoglutarate to succinate is a rate-limiting step for carbon metabolism. These findings enable a better understanding of the relationship between genome annotation and extant metabolic pathways in G. metallireducens.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Antoine Cherix ◽  
Rajesh Sonti ◽  
Bernard Lanz ◽  
Hongxia Lei

Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) upon infusion of [1,6-13C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence. In addition, our analysis suggests a higher rate of ATP production in hypothalamus that is accompanied by an excess of cytosolic nicotinamide adenine dinucleotide (NADH) production that does not fuel mitochondria via the malate-aspartate shuttle (MAS). In conclusion, our results reveal significant metabolic differences, which might be attributable to respective cell populations or functional features of both structures.


Sign in / Sign up

Export Citation Format

Share Document