scholarly journals Complete Genome Sequences of Three Erwinia amylovora Phages Isolated in North America and a Bacteriophage Induced from an Erwinia tasmaniensis Strain

2010 ◽  
Vol 193 (3) ◽  
pp. 795-796 ◽  
Author(s):  
I. Muller ◽  
M. Kube ◽  
R. Reinhardt ◽  
W. Jelkmann ◽  
K. Geider
2019 ◽  
Vol 8 (18) ◽  
Author(s):  
Jo-Ann McClure ◽  
Kunyan Zhang

USA300 is a predominant community-associated methicillin-resistant Staphylococcus aureus strain causing significant morbidity and mortality in North America. We present the full annotated genome sequences of two methicillin-resistant Staphylococcus aureus isolates related to the USA300 pulsotype with the goal of studying the evolutionary relationships of this highly successful strain type.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew C. Riley ◽  
Vincent Perreten ◽  
David A. Bemis ◽  
Stephen A. Kania

We report the first complete genome sequences of three predominant clones (ST68, ST71, and ST84) of methicillin-resistant Staphylococcus pseudintermedius in North America. All strains were isolated from canine infections and have different SCC mec elements and antibiotic resistance gene patterns.


2017 ◽  
Vol 5 (46) ◽  
Author(s):  
Ian N. D. Esplin ◽  
Jordan A. Berg ◽  
Ruchira Sharma ◽  
Robert C. Allen ◽  
Daniel K. Arens ◽  
...  

ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages.


2015 ◽  
Vol 90 (4) ◽  
pp. 1997-2007 ◽  
Author(s):  
Yi Tan ◽  
Ferdaus Hassan ◽  
Jennifer E. Schuster ◽  
Ari Simenauer ◽  
Rangaraj Selvarangan ◽  
...  

ABSTRACTIn August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies.IMPORTANCEUntil recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68.


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Iryna V. Goraichuk ◽  
James F. Davis ◽  
D. Joshua Parris ◽  
Henry M. Kariithi ◽  
Claudio L. Afonso ◽  
...  

ABSTRACT Here, we report near-complete genome sequences of sicinivirus from U.S. poultry flocks in 2003 to 2005 and Mexico in 2019. They show highest nucleotide identity (84.5 to 85.5%) with other members of the Sicinivirus genus. These sequences update knowledge on diversity and contribute to a better understanding of the molecular epidemiology of sicinivirus.


2018 ◽  
Vol 7 (3) ◽  
Author(s):  
Leandra E. Knecht ◽  
Yannick Born ◽  
Joël F. Pothier ◽  
Martin J. Loessner ◽  
Lars Fieseler

Phages vB_EamP-S2 (S2) and vB_EamM-Bue1 (Bue1) infect the plant pathogen Erwinia amylovora. S2 has a genome size of 45,495 bp and belongs to the genus SP6virus.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jean N. Hakizimana ◽  
Jean B. Ntirandekura ◽  
Clara Yona ◽  
Lionel Nyabongo ◽  
Gladson Kamwendo ◽  
...  

AbstractSeveral African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


Sign in / Sign up

Export Citation Format

Share Document