scholarly journals Recombinant Reporter Assay Using Transcriptional Machinery of Mycobacterium tuberculosis

2014 ◽  
Vol 197 (3) ◽  
pp. 646-653 ◽  
Author(s):  
Rajdeep Banerjee ◽  
Paulami Rudra ◽  
Abinit Saha ◽  
Jayanta Mukhopadhyay

Development of anin vivogene reporter assay to assess interactions among the components of the transcription machinery inMycobacterium tuberculosisremains a challenge to scientists due to the tediousness of generation of mutant strains of the extremely slow-growing bacterium. We have developed a recombinant mCherry reporter assay that enables us to monitor the interactions ofMycobacterium tuberculosistranscriptional regulators with its promotersin vivoinEscherichia coli. The assay involves a three-plasmid expression system inE. coliwherein two plasmids are responsible forM. tuberculosisRNA polymerase (RNAP) production and the third plasmid harbors the mCherry reporter gene expression cassette under the control of either a σ factor or a transcriptional regulator-dependent promoter. We observed that the endogenousE. coliRNAP and σ factor do not interfere with the assay. By using the reporter assay, we found that the functional interaction ofM. tuberculosiscyclic AMP receptor protein (CRP) occurs with its own RNA polymerase, not with theE. colipolymerase. Performing the recombinant reporter assay inE. coliis much faster than if performed inM. tuberculosisand avoids the hazard of handling the pathogenic bacterium. The approach could be expanded to develop reporter assays for other pathogenic and slow-growing bacterial systems.

2018 ◽  
Vol 200 (12) ◽  
Author(s):  
Chunyou Mao ◽  
Yan Zhu ◽  
Pei Lu ◽  
Lipeng Feng ◽  
Shiyun Chen ◽  
...  

ABSTRACT The ω subunit is the smallest subunit of bacterial RNA polymerase (RNAP). Although homologs of ω are essential in both eukaryotes and archaea, this subunit has been known to be dispensable for RNAP in Escherichia coli and in other bacteria. In this study, we characterized an indispensable role of the ω subunit in Mycobacterium tuberculosis . Unlike the well-studied E. coli RNAP, the M. tuberculosis RNAP core enzyme cannot be functionally assembled in the absence of the ω subunit. Importantly, substitution of M. tuberculosis ω with ω subunits from E. coli or Thermus thermophilus cannot restore the assembly of M. tuberculosis RNAP. Furthermore, by replacing different regions in M. tuberculosis ω with the corresponding regions from E. coli ω, we found a nonconserved loop region in M. tuberculosis ω essential for its function in RNAP assembly. From RNAP structures, we noticed that the location of the C-terminal region of the β′ subunit (β′CTD) in M. tuberculosis RNAP but not in E. coli or T. thermophilus RNAP is close to the ω loop region. Deletion of this β′CTD in M. tuberculosis RNAP destabilized the binding of M. tuberculosis ω on RNAP and compromised M. tuberculosis core assembly, suggesting that these two regions may function together to play a role in ω-dependent RNAP assembly in M. tuberculosis . Sequence alignment of the ω loop and the β′CTD regions suggests that the essential role of ω is probably restricted to mycobacteria. Together, our study characterized an essential role of M. tuberculosis ω and highlighted the importance of the ω loop region in M. tuberculosis RNAP assembly. IMPORTANCE DNA-dependent RNA polymerase (RNAP), which consists of a multisubunit core enzyme (α 2 ββ′ω) and a dissociable σ subunit, is the only enzyme in charge of transcription in bacteria. As the smallest subunit, the roles of ω remain the least well studied. In Escherichia coli and some other bacteria, the ω subunit is known to be nonessential for RNAP. In this study, we revealed an essential role of the ω subunit for RNAP assembly in the human pathogen Mycobacterium tuberculosis , and a mycobacterium-specific ω loop that plays a role in this function was also characterized. Our study provides fresh insights for further characterizing the roles of bacterial ω subunit.


2009 ◽  
Vol 191 (12) ◽  
pp. 3763-3771 ◽  
Author(s):  
Mohammed Dehbi ◽  
Gregory Moeck ◽  
Francis F. Arhin ◽  
Pascale Bauda ◽  
Dominique Bergeron ◽  
...  

ABSTRACT The primary sigma factor of Staphylococcus aureus, σSA, regulates the transcription of many genes, including several essential genes, in this bacterium via specific recognition of exponential growth phase promoters. In this study, we report the existence of a novel staphylococcal phage G1-derived growth inhibitory polypeptide, referred to as G1ORF67, that interacts with σSA both in vivo and in vitro and regulates its activity. Delineation of the minimal domain of σSA that is required for its interaction with G1ORF67 as amino acids 294 to 360 near the carboxy terminus suggests that the G1 phage-encoded anti-σ factor may occlude the −35 element recognition domain of σSA. As would be predicted by this hypothesis, the G1ORF67 polypeptide abolished both RNA polymerase core-dependent binding of σSA to DNA and σSA-dependent transcription in vitro. While G1ORF67 profoundly inhibits transcription when expressed in S. aureus cells in mode of action studies, our finding that G1ORF67 was unable to inhibit transcription when expressed in Escherichia coli concurs with its inability to inhibit transcription by the E. coli holoenzyme in vitro. These features demonstrate the selectivity of G1ORF67 for S. aureus RNA polymerase. We predict that G1ORF67 is one of the central polypeptides in the phage G1 strategy to appropriate host RNA polymerase and redirect it to phage reproduction.


2015 ◽  
Vol 198 (3) ◽  
pp. 486-497 ◽  
Author(s):  
Neeraja Chilukoti ◽  
C. M. Santosh Kumar ◽  
Shekhar C. Mande

ABSTRACTIntracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability ofMycobacterium tuberculosisGroEL2 to functionally complement anEscherichia coligroELmutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras ofM. tuberculosisGroEL2 andE. coliGroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis.IMPORTANCEConformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability ofM. tuberculosisGroEL2 to functionally complement a strain ofE. coliin whichgroELexpression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activityin vivoandin vitro.


2021 ◽  
Author(s):  
Saurabh Sharma ◽  
Ramesh Kumar ◽  
Ayushi Jain ◽  
Manoj Kumar ◽  
Rahul Gauttam ◽  
...  

DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, β, β’ and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbours a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modelling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Poushali Chakraborty ◽  
Sapna Bajeli ◽  
Deepak Kaushal ◽  
Bishan Dass Radotra ◽  
Ashwani Kumar

AbstractTuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.


2014 ◽  
Vol 82 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Philippa J. Randall ◽  
Nai-Jen Hsu ◽  
Dirk Lang ◽  
Susan Cooper ◽  
Boipelo Sebesho ◽  
...  

ABSTRACTMycobacterium tuberculosisinfection of the central nervous system is thought to be initiated once the bacilli have breached the blood brain barrier and are phagocytosed, primarily by microglial cells. In this study, the interactions ofM. tuberculosiswith neuronsin vitroandin vivowere investigated. The data obtained demonstrate that neurons can act as host cells forM. tuberculosis.M. tuberculosisbacilli were internalized by murine neuronal cultured cells in a time-dependent manner after exposure, with superior uptake by HT22 cells compared to Neuro-2a cells (17.7% versus 9.8%). Internalization ofM. tuberculosisbacilli by human SK-N-SH cultured neurons suggested the clinical relevance of the findings. Moreover, primary murine hippocampus-derived neuronal cultures could similarly internalizeM. tuberculosis. InternalizedM. tuberculosisbacilli represented a productive infection with retention of bacterial viability and replicative potential, increasing 2- to 4-fold within 48 h.M. tuberculosisbacillus infection of neurons was confirmedin vivoin the brains of C57BL/6 mice after intracerebral challenge. This study, therefore, demonstrates neurons as potential new target cells forM. tuberculosiswithin the central nervous system.


Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2749-2756 ◽  
Author(s):  
Nisheeth Agarwal ◽  
Tirumalai R. Raghunand ◽  
William R. Bishai

The wbl (whiB-like) genes encode putative transcription factors unique to actinomycetes. This study characterized the promoter element of one of the seven wbl genes of Mycobacterium tuberculosis, whiB1 (Rv3219c). The results reveal that whiB1 is transcribed by a class I-type cAMP receptor protein (CRP)-dependent promoter, harbouring a CRP-binding site positioned at −58.5 with respect to its transcription start point. In vivo promoter activity analysis and electrophoretic mobility shift assays suggest that the expression of whiB1 is indeed regulated by cAMP-dependent binding of CRPM (encoded by the M. tuberculosis gene Rv3676) to the whiB1 5′ untranslated region (5′UTR). β-Galactosidase gene fusion analysis revealed induction of the whiB1 promoter in M. tuberculosis on addition of exogenous dibutyric cAMP (a diffusible cAMP analogue) only when an intact CRP-binding site was present. These results indicate that M. tuberculosis whiB1 transcription is regulated in part by cAMP levels via direct binding of cAMP-activated CRPM to a consensus CRP-binding site in the whiB1 5′UTR.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


2020 ◽  
Vol 89 (1) ◽  
pp. e00401-20
Author(s):  
Raghuveer Singh ◽  
Jessica A. Slade ◽  
Mary Brockett ◽  
Daniel Mendez ◽  
George W. Liechti ◽  
...  

ABSTRACTThe Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapFCt function in vivo in C. trachomatis. We reasoned that, because DapFCt utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapFCt DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapFCt is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis. Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Seong Won Choi ◽  
Yuexi Gu ◽  
Ryan Scott Peters ◽  
Padmini Salgame ◽  
Jerrold J. Ellner ◽  
...  

ABSTRACT Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis. Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.


Sign in / Sign up

Export Citation Format

Share Document