Membrane assembly: movement of phosphatidylserine between the cytoplasmic and outer membranes of Escherichia coli

1982 ◽  
Vol 152 (3) ◽  
pp. 1033-1041
Author(s):  
K E Langley ◽  
E Hawrot ◽  
E P Kennedy

Phosphatidylserine, normally a trace phospholipid in Escherichia coli, accumulates at high levels in temperature-sensitive phosphatidylserine decarboxylase mutants at nonpermissive temperatures. The intracellular localization of this phospholipid has now been determined. All of the accumulated phosphatidylserine is membrane bound and is distributed about equally between the inner and outer membrane fractions of E. coli as determined by isopycnic sucrose gradient fractionation. Phosphatidylserine is therefore effectively translocated from the inner to the outer membrane. Furthermore, this movement is bidirectional. Outer membrane phosphatidylserine can return to the inner membrane, as shown by the complete conversion of accumulated radioactive phosphatidylserine to phosphatidylethanolamine by inner membrane phosphatidylserine decarboxylase during chase periods. Pulse-chase experiments indicated the newly made phosphatidylserine appears first in the inner membrane and then equilibrates between the inner and outer membranes with a half-time of 12 to 13 min.

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Christian Lorenz ◽  
Thomas J. Dougherty ◽  
Stephen Lory

ABSTRACTBiogenesis of the outer membrane of Gram-negative bacteria depends on dedicated macromolecular transport systems. The LolABCDE proteins make up the machinery for lipoprotein trafficking from the inner membrane (IM) across the periplasm to the outer membrane (OM). The Lol apparatus is additionally responsible for differentiating OM lipoproteins from those for the IM. InEnterobacteriaceae, a default sorting mechanism has been proposed whereby an aspartic acid at position +2 of the mature lipoproteins prevents Lol recognition and leads to their IM retention. In other bacteria, the conservation of sequences immediately following the acylated cysteine is variable. Here we show that inPseudomonas aeruginosa, the three essential Lol proteins (LolCDE) can be replaced with those fromEscherichia coli. TheP. aeruginosalipoproteins MexA, OprM, PscJ, and FlgH, with different sequences at their N termini, were correctly sorted by either theE. coliorP. aeruginosaLolCDE. We further demonstrate that an inhibitor ofE. coliLolCDE is active againstP. aeruginosaonly when expressing theE. coliorthologues. Our work shows that Lol proteins recognize a wide range of signals, consisting of an acylated cysteine and a specific conformation of the adjacent domain, determining IM retention or transport to the OM.IMPORTANCEGram-negative bacteria build their outer membranes (OM) from components that are initially located in the inner membrane (IM). A fraction of lipoproteins is transferred to the OM by the transport machinery consisting of LolABCDE proteins. Our work demonstrates that the LolCDE complexes of the transport pathways ofEscherichia coliandPseudomonas aeruginosaare interchangeable, with theE. coliorthologues correctly sorting theP. aeruginosalipoproteins while retaining their sensitivity to a small-molecule inhibitor. These findings question the nature of IM retention signals, identified inE. colias aspartate at position +2 of mature lipoproteins. We propose an alternative model for the sorting of IM and OM lipoproteins based on their relative affinities for the IM and the ability of the promiscuous sorting machinery to deliver lipoproteins to their functional sites in the OM.


2006 ◽  
Vol 189 (5) ◽  
pp. 1627-1632 ◽  
Author(s):  
Maria D. Bodero ◽  
M. Carolina Pilonieta ◽  
George P. Munson

ABSTRACT The expression of the inner membrane protein NlpA is repressed by the enterotoxigenic Escherichia coli (ETEC) virulence regulator Rns, a member of the AraC/XylS family. The Rns homologs CfaD from ETEC and AggR from enteroaggregative E. coli also repress expression of nlpA. In vitro DNase I and potassium permanganate footprinting revealed that Rns binds to a site overlapping the start codon of nlpA, preventing RNA polymerase from forming an open complex at nlpAp. A second Rns binding site between positions −152 and −195 relative to the nlpA transcription start site is not required for repression. NlpA is not essential for growth of E. coli under laboratory conditions, but it does contribute to the biogenesis of outer membrane vesicles. As outer membrane vesicles have been shown to contain ETEC heat-labile toxin, the repression of nlpA may be an indirect mechanism through which the virulence regulators Rns and CfaD limit the release of toxin.


2002 ◽  
Vol 184 (13) ◽  
pp. 3457-3465 ◽  
Author(s):  
Sandra W. Ramer ◽  
Gary K. Schoolnik ◽  
Cheng-Yen Wu ◽  
Jaiweon Hwang ◽  
Sarah A. Schmidt ◽  
...  

ABSTRACT Production of type IV bundle-forming pili (BFP) by enteropathogenic Escherichia coli (EPEC) requires the protein products of 12 genes of the 14-gene bfp operon. Antisera against each of these proteins were used to demonstrate that in-frame deletion of individual genes within the operon reduces the abundance of other bfp operon-encoded proteins. This result was demonstrated not to be due to downstream polar effects of the mutations but rather was taken as evidence for protein-protein interactions and their role in the stabilization of the BFP assembly complex. These data, combined with the results of cell compartment localization studies, suggest that pilus formation requires the presence of a topographically discrete assembly complex that is composed of BFP proteins in stoichiometric amounts. The assembly complex appears to consist of an inner membrane component containing three processed, pilin-like proteins, BfpI, -J, and -K, that localize with BfpE, -L, and -A (the major pilin subunit); an outer membrane, secretin-like component, BfpB and -G; and a periplasmic component composed of BfpU. Of these, only BfpL consistently localizes with both the inner and outer membranes and thus, together with BfpU, may articulate between the Bfp proteins in the inner membrane and outer membrane compartments.


1992 ◽  
Vol 118 (1) ◽  
pp. 33-42 ◽  
Author(s):  
A Fujishige ◽  
K R Smith ◽  
J L Silen ◽  
D A Agard

alpha-Lytic protease is a bacterial serine protease of the trypsin family that is synthesized as a 39-kD preproenzyme (Silen, J. L., C. N. McGrath, K. R. Smith, and D. A. Agard. 1988. Gene (Amst.). 69: 237-244). The 198-amino acid mature protease is secreted into the culture medium by the native host, Lysobacter enzymogenes (Whitaker, D. R. 1970. Methods Enzymol. 19:599-613). Expression experiments in Escherichia coli revealed that the 166-amino acid pro region is transiently required either in cis (Silen, J. L., D. Frank, A. Fujishige, R. Bone, and D. A. Agard. 1989. J. Bacteriol. 171:1320-1325) or in trans (Silen, J. L., and D. A. Agard. 1989. Nature (Lond.). 341:462-464) for the proper folding and extracellular accumulation of the enzyme. The maturation process is temperature sensitive in E. coli; unprocessed precursor accumulates in the cells at temperatures above 30 degrees C (Silen, J. L., D. Frank, A. Fujishige, R. Bone, and D. A. Agard. 1989. J. Bacteriol. 171:1320-1325). Here we show that full-length precursor produced at nonpermissive temperatures is tightly associated with the E. coli outer membrane. The active site mutant Ser 195----Ala (SA195), which is incapable of self-processing, also accumulates as a precursor in the outer membrane, even when expressed at permissive temperatures. When the protease domain is expressed in the absence of the pro region, the misfolded, inactive protease also cofractionates with the outer membrane. However, when the folding requirement for either wild-type or mutant protease domains is provided by expressing the pro region in trans, both are efficiently secreted into the extracellular medium. Attempts to separate folding and secretion functions by extensive deletion mutagenesis within the pro region were unsuccessful. Taken together, these results suggest that only properly folded and processed forms of alpha-lytic protease are efficiently transported to the medium.


2019 ◽  
Author(s):  
Johannes Kassmannhuber ◽  
Sergio Mauri ◽  
Mascha Rauscher ◽  
Nadja Brait ◽  
Lea Schöner ◽  
...  

Abstract. An N-terminal truncated form of the ice nucleation protein (INP) of Pseudomonas syringae lacking the transport sequence for the localization of InaZ in the outer membrane was fused to N- and C- terminal inner membrane (IM) anchors and expressed in Escherichia coli C41. The ice nucleation (IN) activity of the corresponding living recombinant E. coli catalyzing heterogeneous ice formation of super-cooled water at high subzero temperatures was tested by droplet freezing assay. Median freezing temperature (T50) of the parental living E. coli C41 cells without INP was detected at −20.1 °C and with inner membrane anchored INPs at T50 value between −7 °C and −9 °C demonstrating that IM anchored INPs facing the luminal IM site are able to induce IN from the inside of the bacterium almost similar to bacterial INPs located at the outer membrane. Bacterial Ghosts (BGs) derived from the different constructs showed first droplet freezing values between −6 °C and −8 °C whereas C41 BGs alone without carrying IM anchored INPs exhibit a T50 of −18.9 °C. The more efficient IN of INP-BGs compared to their living parental strains can be explained by the free access of IM anchored INP constructs to ultrapure water filling the inner space of the BGs. The cell killing rate of -NINP carrying E. coli at subzero temperatures is higher when compared to survival rates of the parental C41 strain.


1979 ◽  
Vol 35 (1) ◽  
pp. 417-429
Author(s):  
G. Benga ◽  
A. Hodarnau ◽  
R. Tilinca ◽  
D. Porutiu ◽  
S. Dancea ◽  
...  

The fractionation of human liver mitochondria into inner membrane, outer membrane and matrix material is reported. Compared with rat, human liver mitochondria are more fragile. Fractionation can be achieved in only 2 steps, a digitonin treatment for removal of the outer membrane and centrifugation of the inner membrane plus matrix particles through a linear sucrose gradient resulting in purified inner membranes and matrix.


2002 ◽  
Vol 184 (5) ◽  
pp. 1417-1422 ◽  
Author(s):  
Shin-ichiro Narita ◽  
Kimie Tanaka ◽  
Shin-ichi Matsuyama ◽  
Hajime Tokuda

ABSTRACT ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstitution experiments did not clarify whether or not LolCDE is the sole apparatus for lipoprotein release. To address these issues, a chromosomal lolC-lolD-lolE null mutant harboring a helper plasmid that carries the lolCDE genes and a temperature-sensitive replicon was constructed. The mutant failed to grow at a nonpermissive temperature because of the depletion of LolCDE. In addition to functional LolD, both LolC and LolE were required for growth. At a nonpermissive temperature, the outer membrane lipoproteins were mislocalized in the inner membrane since LolCDE depletion inhibited the release of lipoproteins from the inner membrane. Furthermore, both LolC and LolE were essential for the release of lipoproteins. On the other hand, LolCDE depletion did not affect the translocation of a lipoprotein precursor across the inner membrane and subsequent processing to the mature lipoprotein. From these results, we conclude that the LolCDE complex is an essential ABC transporter for E. coli and the sole apparatus mediating the release of outer membrane lipoproteins from the inner membrane.


2001 ◽  
Vol 183 (22) ◽  
pp. 6538-6542 ◽  
Author(s):  
Kimie Tanaka ◽  
Shin-Ichi Matsuyama ◽  
Hajime Tokuda

ABSTRACT Outer membrane lipoproteins of Escherichia coli are released from the inner membrane upon the formation of a complex with a periplasmic chaperone, LolA, followed by localization to the outer membrane. In vitro biochemical analyses revealed that the localization of lipoproteins to the outer membrane generally requires an outer membrane lipoprotein, LolB, and occurs via transient formation of a LolB-lipoprotein complex. On the other hand, a mutant carrying the chromosomal lolB gene under the control of thelac promoter-operator grew normally in the absence of LolB induction if the mutant did not possess the major outer membrane lipoprotein Lpp, suggesting that LolB is only important for the localization of Lpp in vivo. To examine the in vivo function of LolB, we constructed a chromosomal lolB null mutant harboring a temperature-sensitive helper plasmid carrying the lolBgene. At a nonpermissive temperature, depletion of the LolB protein due to loss of the lolB gene caused cessation of growth and a decrease in the number of viable cells irrespective of the presence or absence of Lpp. LolB-depleted cells accumulated the LolA-lipoprotein complex in the periplasm and the mature form of lipoproteins in the inner membrane. Taken together, these results indicate that LolB is the first example of an essential lipoprotein for E. coliand that its depletion inhibits the upstream reactions of lipoprotein trafficking.


2016 ◽  
Author(s):  
Eugene Fletcher ◽  
Teuta Pilizota ◽  
Philip R. Davies ◽  
Alexander McVey ◽  
Chris E. French

ABSTRACTBiofuel alcohols have severe consequences on the microbial hosts used in their biosynthesis, which limits the productivity of the bioconversion. The cell envelope is one of the most strongly affected structures, in particular, as the external concentration of biofuels rises during biosynthesis. Damage to the cell envelope can have severe consequences, such as impairment of transport into and out of the cell; however the nature of butanol-induced envelope damage has not been well characterized. In the present study, the effects ofn-butanol on the cell envelope ofEscherichia coliwere investigated. Using enzyme and fluorescence-based assays, we observed that 1% v/v n-butanol resulted in release of lipopolysaccharides from the outer membrane ofE. coliand caused ‘leakiness’ in both outer and inner membranes. Higher concentrations ofn-butanol, within the range of 2% – 10% (v/v), resulted in inner membrane protrusion through the peptidoglycan observed by characteristic blebs. The findings suggest that strategies for rational engineering of butanol-tolerant bacterial strains should take into account all components of the cell envelope.


2012 ◽  
Vol 40 (6) ◽  
pp. 1475-1479 ◽  
Author(s):  
Nicholas G. Housden ◽  
Colin Kleanthous

We are investigating how protein bacteriocins import their toxic payload across the Gram-negative cell envelope, both as a means of understanding the translocation process itself and as a means of probing the organization of the cell envelope and the function of the protein machines within it. Our work focuses on the import mechanism of the group A endonuclease (DNase) colicin ColE9 into Escherichia coli, where we combine in vivo observations with structural, biochemical and biophysical approaches to dissect the molecular mechanism of colicin entry. ColE9 assembles a multiprotein ‘translocon’ complex at the E. coli outer membrane that triggers entry of the toxin across the outer membrane and the simultaneous jettisoning of its tightly bound immunity protein, Im9, in a step that is dependent on the protonmotive force. In the present paper, we focus on recent work where we have uncovered how ColE9 assembles its translocon complex, including isolation of the complex, and how this leads to subversion of a signal intrinsic to the Tol–Pal assembly within the periplasm and inner membrane. In this way, the externally located ColE9 is able to ‘connect’ to the inner membrane protonmotive force via a network of protein–protein interactions that spans the entirety of the E. coli cell envelope to drive dissociation of Im9 and initiate entry of the colicin into the cell.


Sign in / Sign up

Export Citation Format

Share Document