scholarly journals Genetic and Molecular Analysis of cglB, a Gene Essential for Single-Cell Gliding in Myxococcus xanthus

1999 ◽  
Vol 181 (14) ◽  
pp. 4381-4390 ◽  
Author(s):  
Ana M. Rodriguez ◽  
Alfred M. Spormann

ABSTRACT Gliding movements of individual isolated Myxococcus xanthus cells depend on the genes of the A-motility system (agl and cgl genes). Mutants carrying defects in those genes are unable to translocate as isolated cells on solid surfaces. The motility defect of cgl mutants can be transiently restored to wild type by extracellular complementation upon mixing mutant cells with wild-type or other motility mutant cells. To develop a molecular understanding of the function of a Cgl protein in gliding motility, we cloned the cglB wild-type allele by genetic complementation of the mutant phenotype. The nucleotide sequence of a 2.85-kb fragment was determined and shown to encode two complete open reading frames. The CglB protein was determined to be a 416-amino-acid putative lipoprotein with an unusually high cysteine content. The CglB antigen localized to the membrane fraction. The swarming and gliding defects of a constructed ΔcglBmutant were fully restored upon complementation with thecglB wild-type allele. Experiments with a cglBallele encoding a CglB protein with a polyhistidine tag at the C terminus showed that this allele also promoted wild-type levels of swarming and single-cell gliding, but was unable to stimulate ΔcglB cells to move. Possible functions of CglB as a mechanical component or as a signal protein in single cell gliding are discussed.

1999 ◽  
Vol 181 (8) ◽  
pp. 2593-2601 ◽  
Author(s):  
Alfred M. Spormann ◽  
Dale Kaiser

ABSTRACT Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mutants defective inmglAB or in cglB, an A-motility gene, reversed the direction of gliding at frequencies which were more than 1 order of magnitude higher than that of wild type cells (2.9 min−1for ΔmglAB mutants and 2.7 min−1 forcglB mutants, compared to 0.17 min−1 for wild-type cells). The average gliding speed of ΔmglABmutant cells was 40% of that of wild-type cells (on average 1.9 μm/min for ΔmglAB mutants, compared to 4.4 μm/min for wild-type cells). The mglA-dependent reversals and gliding speeds were dependent on the level of intracellular MglA protein: mglB mutant cells, which contain only 15 to 20% of the wild-type level of MglA protein, glided with an average reversal frequency of about 1.8 min−1 and an average speed of 2.6 μm/min. These values range between those exhibited by wild-type cells and by ΔmglAB mutant cells. Epistasis analysis of frz mutants, which are defective in aggregation and in single-cell reversals, showed that a frzD mutation, but not a frzE mutation, partially suppressed themglA phenotype. In contrast to mgl mutants,cglB mutant cells were able to move with wild-type speeds only when in close proximity to each other. However, under those conditions, these mutant cells were found to glide less often with those speeds. By analyzing double mutants, the high reversing movements and gliding speeds of cglB cells were found to be strictly dependent on type IV pili, encoded by S-motility genes, whereas the high-reversal pattern ofmglAB cells was only partially reduced by apilR mutation. These results suggest that the MglA protein is required for both control of reversal frequency and gliding speed and that in the absence of A motility, type IV pilus-dependent cell movement includes reversals at high frequency. Furthermore, mglAB mutants behave as if they were severely defective in A motility but only partially defective in S motility.


2020 ◽  
Author(s):  
Brian A. Wadugu ◽  
Amanda Heard ◽  
Sridhar N. Srivatsan ◽  
Michael O. Alberti ◽  
Matthew Ndonwi ◽  
...  

AbstractSomatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained wild-type allele is expressed, suggesting that mutant hematopoietic cells may require the residual wild-type allele to be viable and cause disease. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knock-out mice was similar to control mice, but that deletion of the wild-type allele in U2AF1(S34F) heterozygous mutant expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of wild-type U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1 (S34F) expressing cells were also more sensitive to reduced, but not absent, expression of wild-type U2AF1 than non-mutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the wild-type U2af1 allele was deleted compared to when it was not deleted. These results suggest that selectively targeting the wild-type U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.


2004 ◽  
Vol 186 (18) ◽  
pp. 6168-6178 ◽  
Author(s):  
Ruifeng Yang ◽  
Sarah Bartle ◽  
Rebecca Otto ◽  
Angela Stassinopoulos ◽  
Matthew Rogers ◽  
...  

ABSTRACT The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 300
Author(s):  
Muhammad Miftahussurur ◽  
Dalla Doohan ◽  
Ari Fahrial Syam ◽  
Iswan Abbas Nusi ◽  
Phawinee Subsomwong ◽  
...  

CYP2C19 polymorphisms are important factors for proton pump inhibitor-based therapy. We examined the CYP2C19 genotypes and analyzed the distribution among ethnicities and clinical outcomes in Indonesia. We employed the polymerase chain reaction-restriction fragment length polymorphism method to determine the CYP2C19 genotypes and evaluated inflammation severity with the updated Sydney system. For CYP2C19*2, 46.4% were the homozygous wild-type allele, 14.5% were the homozygous mutated allele, and 39.2% were the heterozygous allele. For CYP2C19*3, 88.6% were the homozygous wild-type allele, 2.4% were the homozygous mutated allele, and 9.0% were the heterozygous allele. Overall, the prevalence of rapid, intermediate, and poor metabolizers in Indonesia was 38.5, 41.6, and 19.9%, respectively. In the poor metabolizer group, the frequency of allele *2 (78.8%) was higher than the frequency of allele *3 (21.2%). The Papuan had a significantly higher likelihood of possessing poor metabolizers than the Balinese (OR 11.0; P = 0.002). The prevalence of poor metabolizers was lower compared with the rapid and intermediate metabolizers among patients with gastritis and gastroesophageal reflux disease. Intermediate metabolizers had the highest prevalence, followed by rapid metabolizers and poor metabolizers. Dosage adjustment should therefore be considered when administering proton pump inhibitor-based therapy in Indonesia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
S.L. Nutt ◽  
M. Busslinger

AbstractIt is generally assumed that most mammalian genes are transcribed from both alleles. Hence, the diploid state of the genome offers the advantage that a loss-of-function mutation in one allele can be compensated for by the remaining wild-type allele of the same gene. Indeed, the vast majority of human disease syndromes and engineered mutations in the mouse genome are recessive, indicating that recessiveness is the ‘default’ state. However, a minority of genes are semi-dominant, as heterozygous loss-of-function mutation in these genes leads to phenotypic abnormalities. This condition, known as haploinsufficiency, has been described for five of the nine mammalian


2021 ◽  
Vol 49 (05) ◽  
pp. 350-354
Author(s):  
Verena Maria Herb ◽  
Verena Zehetner ◽  
Klaas-Ole Blohm

AbstractThis is the first description of Multiple Congenital Ocular Anomalies (MCOA) in a silver coat Missouri Fox Trotter determined to be heterozygous for the Silver PMEL17 missense mutation associated with MCOA and a silver coat in other breeds. The stallion was treated for meningoencephalitis and bilateral uveitis of unknown origin. A complete ophthalmic examination and ocular ultrasonography were performed. As an incidental finding, the patient exhibited bilateral cystic lesions restricted to the temporal anterior uvea consistent with the Cyst phenotype and was genotyped heterozygous for the Silver mutation. Additionally, 4 other non-silver colored Missouri Fox Trotters were genotyped homozygous for the wild-type allele. Screening for PMEL17 mutation in Missouri Fox Trotters accompanied by ophthalmic phenotype characterization is recommended to determine the allelic frequency and facilitate informed breeding decisions since the silver coat color is particularly popular.


Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 309-325
Author(s):  
D Busson ◽  
M Gans ◽  
K Komitopoulou ◽  
M Masson

ABSTRACT Three dominant female-sterile mutations were isolated following ethyl methanesulfonate (EMS) mutagenesis. Females heterozygous for two of these mutations show atrophy of the ovaries and produce no eggs (ovoD  1) or few eggs (ovoD  2); females heterozygous for the third mutation, ovoD  3, lay flaccid eggs. All three mutations are germ line-dependent and map to the cytological region 4D-E on the X chromosome; they represent a single allelic series. Two doses of the wild-type allele restore fertility to females carrying ovoD  3 and ovoD  2, but females carrying ovoD  1 and three doses of the wild-type allele remain sterile. The three mutations are stable in males but are capable of reversion in females; reversion of the dominant mutations is accompanied by the appearance, in the same region, of a recessive mutation causing female sterility. We discuss the utility of these mutations as markers of clones induced in the female germ line by mitotic recombination as well as the nature of the mutations.


1990 ◽  
Vol 10 (10) ◽  
pp. 5071-5076
Author(s):  
C A Hrycyna ◽  
S Clarke

Membrane extracts of sterile Saccharomyces cerevisiae strains containing the a-specific ste14 mutation lack a farnesyl cysteine C-terminal carboxyl methyltransferase activity that is present in wild-type a and alpha cells. Other a-specific sterile strains with ste6 and ste16 mutations also have wild-type levels of the farnesyl cysteine carboxyl methyltransferase activity. This enzyme activity, detected by using a synthetic peptide sequence based on the C-terminus of a ras protein, may be responsible not only for the essential methylation of the farnesyl cysteine residue of a mating factor, but also for the methylation of yeast RAS1 and RAS2 proteins and possibly other polypeptides with similar C-terminal structures. We demonstrate that the farnesylation of the cysteine residue in the peptide is required for the methyltransferase activity, suggesting that methyl esterification follows the lipidation reaction in the cell. To show that the loss of methyltransferase activity is a direct result of the ste14 mutation, we transformed ste14 mutant cells with a plasmid complementing the mating defect of this strain and found that active enzyme was produced. Finally, we demonstrated that a similar transformation of cells possessing the wild-type STE14 gene resulted in sixfold overproduction of the enzyme. Although more complicated possibilities cannot be ruled out, these results suggest that STE14 is a candidate for the structural gene for a methyltransferase involved in the formation of isoprenylated cysteine alpha-methyl ester C-terminal structures.


1995 ◽  
Vol 108 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
E. Shelden ◽  
D.A. Knecht

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant cells are found primarily at the lateral edges of streams. Wild-type cells move at average rates of 8.5 +/- 4.9 microns/min within aggregation streams and can exhibit regular periodic movement at 3.5 minute intervals; half as long as the 7 minute period reported previously for isolated cells. Myosin II mutants under the same conditions move at 5.0 +/- 4.8 microns/min, twice as fast as reported previously for isolated myosin II mutant cells, and fail to display regular periodic movement. When removed from aggregation streams myosin II mutant cells move at only 2.5 +/- 2.0 microns/min, while wild-type cells under these conditions move at 5.9 +/- 4.5 microns/min. Analysis of cell morphology further reveals that myosin II mutant cells are grossly and dynamically deformed within wild-type aggregation streams but not when removed from streams and examined in isolation. These data reveal that the loss of myosin II has dramatic consequences for cells undergoing multicellular development. The segregation of mutant cells to aggregation stream edges demonstrates that myosin II mutants are unable to penetrate a multicellular mass of wild-type cells, while the observed distortion of myosin II mutant cells suggests that the cortex of such cells is too flacid to resist forces generated during movement. The increased rate of mutant cell movement and distortion of mutant cell morphology seen within wild-type aggregation streams further argues both that movement of wild-type cells within a multicellular mass can generate traction forces on neighboring cells and that mutant cell morphology and behavior can be altered by these forces. In addition, the distortion of myosin II mutant cells within wild-type aggregation streams indicates that myosin is not required for the formation of cell-cell contacts. Finally, the consequences of the loss of myosin II for cells during multicellular development are much more severe than has been previously revealed for isolated cells. The techniques used here to analyze the behavior of individual cells within multicellular aggregates provide a more sensitive assay of mutant cell phenotype than has been previously available and will be generally applicable to the study of motility and cytoskeletal mutants in Dictyostelium.


Sign in / Sign up

Export Citation Format

Share Document