scholarly journals Role of Crotonyl Coenzyme A Reductase in Determining the Ratio of Polyketides Monensin A and Monensin B Produced byStreptomyces cinnamonensis

1999 ◽  
Vol 181 (21) ◽  
pp. 6806-6813 ◽  
Author(s):  
Haibin Liu ◽  
Kevin A. Reynolds

ABSTRACT The ccr gene, encoding crotonyl coenzyme A (CoA) reductase (CCR), was cloned from Streptomyces cinnamonensisC730.1 and shown to encode a protein with 90% amino acid sequence identity to the CCRs of Streptomyces collinus andStreptomyces coelicolor. A ccr-disrupted mutant, S. cinnamonensis L1, was constructed by inserting the hyg resistance gene into a unique BglII site within the ccr coding region. By use of theermE* promoter, the S. collinus ccr gene was expressed from plasmids in S. cinnamonensis C730.1/pHL18 and L1/pHL18. CCR activity in mutant L1 was shown to decrease by more than 90% in both yeast extract-malt extract (YEME) medium and a complex fermentation medium, compared to that in wild-type C730.1. Compared to C730.1, mutants C730.1/pHL18 and L1/pHL18 exhibited a huge increase in CCR activity (14- and 13-fold, respectively) in YEME medium and a moderate increase (3.7- and 2.7-fold, respectively) in the complex fermentation medium. In the complex fermentation medium,S. cinnamonensis L1 produced monensins A and B in a ratio of 12:88, dramatically lower than the 50:50 ratio observed for both C730.1 and C730.1/pHL18. Plasmid (pHL18)-based expression of theS. collinus ccr gene in mutant L1 increased the monensin A/monensin B ratio to 42:58. Labeling experiments with [1,2-13C2]acetate demonstrated the same levels of intact incorporation of this material into the butyrate-derived portion of monensin A in both C730.1 and mutant C730.1/pLH18 but a markedly decreased level of such incorporation in mutant L1. The addition of crotonic acid at 15 mM led to significant increases in the monensin A/monensin B ratio in C730.1 and C730.1/pHL18 but had no effect in S. cinnamonensis L1. These results demonstrate that CCR plays a significant role in providing butyryl-CoA for monensin A biosynthesis and is present in wild-type S. cinnamonensis C730.1 at a level sufficient that the availability of the appropriate substrate (crotonyl-CoA) is limiting.

2003 ◽  
Vol 185 (9) ◽  
pp. 2802-2810 ◽  
Author(s):  
Sergio Palacios ◽  
Vincent J. Starai ◽  
Jorge C. Escalante-Semerena

ABSTRACT The studies reported here identify propionyl coenzyme A (propionyl-CoA) as the common intermediate in the 1,2-propanediol and propionate catabolic pathways of Salmonella enterica serovar Typhimurium LT2. Growth on 1,2-propanediol as a carbon and energy source led to the formation and excretion of propionate, whose activation to propionyl-CoA relied on the activities of the propionate kinase (PduW)/phosphotransacetylase (Pta) enzyme system and the CobB sirtuin-controlled acetyl-CoA and propionyl-CoA (Acs, PrpE) synthetases. The different affinities of these systems for propionate ensure sufficient synthesis of propionyl-CoA to support wild-type growth of S. enterica under low or high concentrations of propionate in the environment. These redundant systems of propionyl-CoA synthesis are needed because the prpE gene encoding the propionyl-CoA synthetase enzyme is part of the prpBCDE operon under the control of the PrpR regulatory protein, which needs 2-methylcitrate as a coactivator. Because the synthesis of 2-methylcitrate by PrpC (i.e., the 2-methylcitrate synthase enzyme) requires propionyl-CoA as a substrate, the level of propionyl-CoA needs to be raised by the Acs or PduW-Pta system before 2-methylcitrate can be synthesized and prpBCDE transcription can be activated.


2000 ◽  
Vol 182 (19) ◽  
pp. 5470-5478 ◽  
Author(s):  
J. A. Aínsa ◽  
N. J. Ryding ◽  
N. Hartley ◽  
K. C. Findlay ◽  
C. J. Bruton ◽  
...  

ABSTRACT The whiA sporulation gene of Streptomyces coelicolor A3(2), which plays a key role in switching aerial hyphae away from continued extension growth and toward sporulation septation, was cloned by complementation of whiA mutants. DNA sequencing of the wild-type allele and five whiAmutations verified that whiA is a gene encoding a protein with homologues in all gram-positive bacteria whose genome sequence is known, whether of high or low G+C content. No function has been attributed to any of these WhiA-like proteins. In most cases, as inS. coelicolor, the whiA-like gene is downstream of other conserved genes in an operon-like cluster. Phenotypic analysis of a constructed disruption mutant confirmed that whiA is essential for sporulation. whiA is transcribed from at least two promoters, the most downstream of which is located within the preceding gene and is strongly up-regulated when colonies are undergoing sporulation. The up-regulation depends on a functionalwhiA gene, suggesting positive autoregulation, although it is not known whether this is direct or indirect. Unlike the promoters of some other sporulation-regulatory genes, the whiApromoter does not depend on the sporulation-specific ς factor encoded by whiG.


2013 ◽  
Vol 79 (19) ◽  
pp. 6134-6139 ◽  
Author(s):  
Ken'ichiro Matsumoto ◽  
Yoshikazu Tanaka ◽  
Tsuyoshi Watanabe ◽  
Ren Motohashi ◽  
Koji Ikeda ◽  
...  

ABSTRACTNADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB fromRalstonia eutrophawas engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-basedin vivoscreening system usingEscherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibitedkcatvalues that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinantCorynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 3166-3179 ◽  
Author(s):  
Marco Fischer ◽  
Jesse Alderson ◽  
Geertje van Keulen ◽  
Janet White ◽  
R. Gary Sawers

Streptomyces coelicolor A3(2) synthesizes three membrane-associated respiratory nitrate reductases (Nars). During aerobic growth in liquid medium the bacterium was able to reduce 50 mM nitrate stoichiometrically to nitrite. Construction and analysis of a mutant in which all three narGHJI operons were deleted showed that it failed to reduce nitrate. Deletion of the gene encoding MoaA, which catalyses the first step in molybdenum cofactor biosynthesis, also prevented nitrate reduction, consistent with the Nars being molybdoenzymes. In contrast to the triple narGHJI mutant, the moaA mutant was also unable to use nitrate as sole nitrogen source, which indicates that the assimilatory nitrate reductases in S. coelicolor are also molybdenum-dependent. Analysis of S. coelicolor growth on solid medium demonstrated that Nar activity is present in both spores and mycelium (hypha). Development of a survival assay with the nitrate analogue chlorate revealed that wild-type S. coelicolor spores and mycelium were sensitive to chlorate after anaerobic incubation, independent of the presence of nitrate, while both the moaA and triple nar mutants were chlorate-resistant. Complementation of the triple nar mutant with the individual narGHJI operons delivered on cosmids revealed that each operon encoded an enzyme that was synthesized and active in nitrate or chlorate reduction. The data obtained from these studies allow a tentative assignment of Nar1 activity to spores, Nar2 to spores and mycelium, and Nar3 exclusively to mycelium.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 519d-519 ◽  
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Nicotiana alata Link and Otto. was transformed via Agrobacterium tumefaciens encoding a senescence-specific promoter SAG12 cloned from Arabidopsis thaliana fused to a Agrobacterium tumefaciens gene encoding isopentenyl transferase (IPT) that catalyzes cytokinin synthesis. This was considered an autoregulatory senescence-inhibitor system. In 1996, we reported delayed senescence of intact flowers by 2 to 6 d and delayed leaf senescence of transgenic vs. wild-type N. alata. Further evaluations in 1997 revealed several other interesting effects of the SAG12-IPT gene construct. Measurement of chlorophyll content of mature leaves showed higher levels of both chlorophyll a and b in transgenic material under normal fertilization and truncated fertilization regimes. At 4 to 5 months of age transgenic plants expressed differences in plant height, branching, and dry weight. Plant height was reduced by 3 to 13 cm; branch counts increased 2 to 3 fold; and shoot dry weight increased up to 11 g over wild-type N. alata. These observations indicate the system is not tightly autoregulated and may prove useful to the floriculture industry for producing compact and more floriferous plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


2010 ◽  
Vol 207 (12) ◽  
pp. 2569-2579 ◽  
Author(s):  
Joanne M. Hildebrand ◽  
Zhenghua Luo ◽  
Michelle K. Manske ◽  
Tammy Price-Troska ◽  
Steven C. Ziesmer ◽  
...  

The cytokine B cell activating factor (BAFF) and its receptor, BAFF receptor (BAFF-R), modulate signaling cascades critical for B cell development and survival. We identified a novel mutation in TNFRSF13C, the gene encoding human BAFF-R, that is present in both tumor and germline tissue from a subset of patients with non-Hodgkin lymphoma. This mutation encodes a His159Tyr substitution in the cytoplasmic tail of BAFF-R adjacent to the TRAF3 binding motif. Signaling through this mutant BAFF-R results in increased NF-κB1 and NF-κB2 activity and increased immunoglobulin production compared with the wild-type (WT) BAFF-R. This correlates with increased TRAF2, TRAF3, and TRAF6 recruitment to His159Tyr BAFF-R. In addition, we document a requirement for TRAF6 in WT BAFF-R signaling. Together, these data identify a novel lymphoma-associated mutation in human BAFF-R that results in NF-κB activation and reveals TRAF6 as a necessary component of normal BAFF-R signaling.


Sign in / Sign up

Export Citation Format

Share Document