scholarly journals Chromosome Methylation and Measurement of Faithful, Once and Only Once per Cell Cycle Chromosome Replication inCaulobacter crescentus

1999 ◽  
Vol 181 (7) ◽  
pp. 1984-1993 ◽  
Author(s):  
Gregory T. Marczynski

ABSTRACT Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Ω-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Ω-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Ω-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Ω-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the “once and only once per cell cycle” rule of chromosome replication inC. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.

2006 ◽  
Vol 188 (6) ◽  
pp. 2244-2253 ◽  
Author(s):  
Rasmus B. Jensen

ABSTRACT Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.


2016 ◽  
Author(s):  
James A. Taylor ◽  
Gaël Panis ◽  
Patrick H. Viollier ◽  
Gregory T. Marczynski

AbstractBacterial chromosome replication is regulated from a single replication origin (ori) that receives cell cycle signals. Following replication, bacteria often use theparABSpartition system with a centromere-likeparSlocus to place the chromosomes into the daughter cells. Our knowledge of cell cycle regulation is incomplete and we searched for novel regulators of chromosome replication. Here we show that in the cell cycle modelCaulobacter crescentusa novel DNA-binding protein promotes both the initiation of chromosome replication and the earliest step of chromosome partitioning. We used biochemical fractionation to identify a protein (OpaA) that preferentially binds to mutatedoriDNA that also increasesori-plasmid replicationin vivo. OpaA represents a previously unknown class of DNA-binding proteins.opaAgene expression is essential and sufficient OpaA levels are required for the correct timing of chromosome replication. Whole genome ChIP-seq identified the genomic binding sites for OpaA, with the strongest associations at theparABSlocus nearori. Using molecular-genetic and fluorescence microscopy experiments, we showed that OpaA also promotes the first step of chromosome partitioning, the initial separation of the duplicatedparSloci followingorireplication. This separation occurs before theparABSmechanism and it coincides with the regulatory step that splits the symmetry of the chromosomes so that they are placed at distinct cell-poles which develop into replicating and non-replicating cell-types. We propose that OpaA coordinates replication with the poorly understood mechanism of early chromosome separation.opaAlethal suppressor and antibiotic experiments argue that future studies be focused on the mechanistic roles for transcription and translation at this critical step of the cell cycle.Author SummaryLike all organisms, bacteria must replicate their chromosomes and move them into the newly dividing cells. Eukaryotes use non-overlapping phases, first for chromosome replication (S-phase) followed by mitosis (M-phase) when the completely duplicated chromosomes are separated. However, bacteria combine both phases so chromosome replication and chromosome separation (termed chromosome “partitioning”) overlap. In many bacteria, includingCaulobacter crescentus, chromosome replication initiates from a single replication origin (ori) and the first duplicated regions of the chromosome immediately begin “partitioning” towards the cell poles long before the whole chromosome has finished replication. This partitioning movement uses the centromere-like DNA called“parS”that is located near theori. Here we identify a completely novel type of DNA-binding protein called OpaA and we show that it acts at bothoriandparS. The timing and coordination of overlapping chromosome replication and partitioning phases is a special regulatory problem for bacteria. We further demonstrate that OpaA is selectively required for the initiation of chromosome replication atoriand likewise that OpaA is selectively required for the initial partitioning ofparS. Therefore, we propose that OpaA is a novel regulator that coordinates chromosome replication with the poorly understood mechanism of early chromosome separation.


2019 ◽  
Vol 47 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Antonio Frandi ◽  
Justine Collier

Abstract The environmental Alphaproteobacterium Caulobacter crescentus is a classical model to study the regulation of the bacterial cell cycle. It divides asymmetrically, giving a stalked cell that immediately enters S phase and a swarmer cell that stays in the G1 phase until it differentiates into a stalked cell. Its genome consists in a single circular chromosome whose replication is tightly regulated so that it happens only in stalked cells and only once per cell cycle. Imbalances in chromosomal copy numbers are the most often highly deleterious, if not lethal. This review highlights recent discoveries on pathways that control chromosome replication when Caulobacter is exposed to optimal or less optimal growth conditions. Most of these pathways target two proteins that bind directly onto the chromosomal origin: the highly conserved DnaA initiator of DNA replication and the CtrA response regulator that is found in most Alphaproteobacteria. The concerted inactivation and proteolysis of CtrA during the swarmer-to-stalked cell transition license cells to enter S phase, while a replisome-associated Regulated Inactivation and proteolysis of DnaA (RIDA) process ensures that initiation starts only once per cell cycle. When Caulobacter is stressed, it turns on control systems that delay the G1-to-S phase transition or the elongation of DNA replication, most probably increasing its fitness and adaptation capacities.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Roxann A. Lerma ◽  
T. J. Tidwell ◽  
Jesse L. Cahill ◽  
Eric S. Rasche ◽  
Gabriel F. Kuty Everett

Podophage Percy infectsCaulobacter crescentus, a Gram-negative bacterium that divides asymmetrically and is a commonly used model organism to study the cell cycle, asymmetric cell division, and cell differentiation. Here, we announce the sequence and annotated complete genome of the phiKMV-like podophage Percy and note its prominent features.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
James R. Aretakis ◽  
Alisa Gega ◽  
Jared M. Schrader

ABSTRACTCaulobacter crescentusis a model for the bacterial cell cycle which culminates in asymmetric cell division, yet little is known about the absolute levels of protein synthesis of the cellular parts needed to complete the cell cycle. Here we utilize ribosome profiling to provide absolute measurements of mRNA translation inC. crescentus, providing an important resource with quantitative genome-wide measurements of protein output across individual genes. Analysis of protein synthesis rates revealed ∼4.5% of cellular protein synthesis is for genes related to vitamin B12import (btuB) and B12-independent methionine biosynthesis (metE) when grown in common growth media lacking B12. While its facultative B12lifestyle provides a fitness advantage in the absence of B12, we find that it provides a fitness disadvantage of the cells in the presence of B12, potentially explaining why manyCaulobacterspecies have lost themetEgene and become obligates for B12.IMPORTANCECaulobacter crescentusis a model system of the bacterial cell cycle culminating in asymmetric cell division, with each daughter cell inheriting a distinct set of proteins. While a genetic network of master transcription factors coordinates the cell cycle timing of transcription for nearly 20% ofCaulobactergenes, we lack knowledge of how many of each protein “part” encoded in the genome are synthesized. Therefore, to determine the absolute production rates across the genome, we performed ribosome profiling, providing, for the first time, a quantitative resource with measurements of each protein “part” needed to generate daughter cells. This resource furthers the goal of a systems-level understanding of the genetic network controlling asymmetric cell division. To highlight the utility of this data set, we probe the protein synthesis cost of a B12utilization pathway and provide new insights intoCaulobacter’s adaptation to its natural environments.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Shogo Ozaki ◽  
Urs Jenal ◽  
Tsutomu Katayama

ABSTRACT Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization. IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity.


1978 ◽  
Vol 33 (1) ◽  
pp. 399-411
Author(s):  
J. Creanor

Oxygen uptake was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe. The rate of oxygen uptake was found to increase in a step-wise manner at the beginning of the cycle and again in the middle of the cycle. The increases in rate were such that overall, oxygen uptake doubled in rate once per cell cycle. Addition of inhibitors of DNA synthesis or nuclear division to a synchronous culture did not affect the uptake of oxygen. In an induced synchronous culture, in which DNA synthesis, cell division, and nuclear division, but not ‘growth’ were synchronized, oxygen uptake increased continuously in rate and did not show the step-wise rises which were shown in the selection-synchronized culture. These results were compared with previous measurements of oxygen uptake in yeast and an explanation is suggested for the many different patterns which have been reported.


Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 159-172 ◽  
Author(s):  
D.P. Hill ◽  
S. Strome

We are investigating the involvement of the microfilament cytoskeleton in the development of early Caenorhabditis elegans embryos. We previously reported that several cytoplasmic movements in the zygote require that the microfilament cytoskeleton remain intact during a narrow time interval approximately three-quarters of the way through the first cell cycle. In this study, we analyze the developmental consequences of brief, cytochalasin D-induced microfilament disruption during the 1-cell stage. Our results indicate that during the first cell cycle microfilaments are important only during the critical time interval for the 2-cell embryo to undergo the correct pattern of subsequent divisions and to initiate the differentiation of at least 4 tissue types. Disruption of microfilaments during the critical interval results in aberrant division and P-granule segregation patterns, generating some embryos that we classify as ‘reverse polarity’, ‘anterior duplication’, and ‘posterior duplication’ embryos. These altered patterns suggest that microfilament disruption during the critical interval leads to the incorrect distribution of developmental instructions responsible for early pattern formation. The strict correlation between unequal division, unequal germ-granule partitioning, and the generation of daughter cells with different cell cycle periods observed in these embryos suggests that the three processes are coupled. We hypothesize that (1) an ‘asymmetry determinant’, normally located at the posterior end of the zygote, governs asymmetric cell division, germ-granule segregation, and the segregation of cell cycle timing elements during the first cell cycle, and (2) the integrity or placement of this asymmetry determinant is sensitive to microfilament disruption during the critical time interval.


Sign in / Sign up

Export Citation Format

Share Document